Abstract:Interpretability is a topic that has been in the spotlight for the past few years. Most existing interpretability techniques produce interpretations in the form of rules or feature importance. These interpretations, while informative, may be harder to understand for non-expert users and therefore, cannot always be considered as adequate explanations. To that end, explanations in natural language are often preferred, as they are easier to comprehend and also more presentable to end-users. This work introduces an early concept for a novel pipeline that can be used in text classification tasks, offering predictions and explanations in natural language. It comprises of two models: a classifier for labelling the text and an explanation generator which provides the explanation. The proposed pipeline can be adopted by any text classification task, given that ground truth rationales are available to train the explanation generator. Our experiments are centred around the tasks of sentiment analysis and offensive language identification in Greek tweets, using a Greek Large Language Model (LLM) to obtain the necessary explanations that can act as rationales. The experimental evaluation was performed through a user study based on three different metrics and achieved promising results for both datasets.
Abstract:This paper deals with the problem of informative path planning for a UAV deployed for precision agriculture applications. First, we observe that the ``fear of missing out'' data lead to uniform, conservative scanning policies over the whole agricultural field. Consequently, employing a non-uniform scanning approach can mitigate the expenditure of time in areas with minimal or negligible real value, while ensuring heightened precision in information-dense regions. Turning to the available informative path planning methodologies, we discern that certain methods entail intensive computational requirements, while others necessitate training on an ideal world simulator. To address the aforementioned issues, we propose an active sensing coverage path planning approach, named OverFOMO, that regulates the speed of the UAV in accordance with both the relative quantity of the identified classes, i.e. crops and weeds, and the confidence level of such detections. To identify these instances, a robust Deep Learning segmentation model is deployed. The computational needs of the proposed algorithm are independent of the size of the agricultural field, rendering its applicability on modern UAVs quite straightforward. The proposed algorithm was evaluated with a simu-realistic pipeline, combining data from real UAV missions and the high-fidelity dynamics of AirSim simulator, showcasing its performance improvements over the established state of affairs for this type of missions. An open-source implementation of the algorithm and the evaluation pipeline is also available: \url{https://github.com/emmarapt/OverFOMO}.
Abstract:Social media users often hold several accounts in their effort to multiply the spread of their thoughts, ideas, and viewpoints. In the particular case of objectionable content, users tend to create multiple accounts to bypass the combating measures enforced by social media platforms and thus retain their online identity even if some of their accounts are suspended. User identity linkage aims to reveal social media accounts likely to belong to the same natural person so as to prevent the spread of abusive/illegal activities. To this end, this work proposes a machine learning-based detection model, which uses multiple attributes of users' online activity in order to identify whether two or more virtual identities belong to the same real natural person. The models efficacy is demonstrated on two cases on abusive and terrorism-related Twitter content.