Abstract:This paper investigates secure communications in a near-field multi-functional integrated sensing, communication, and powering (ISCAP) system with an extremely large-scale antenna arrays (ELAA) equipped at the base station (BS). In this system, the BS sends confidential messages to a single communication user (CU), and at the same time wirelessly senses a point target and charges multiple energy receivers (ERs). It is assumed that the ERs and the sensing target are potential eavesdroppers that may attempt to intercept the confidential messages intended for the CU. We consider the joint transmit beamforming design to support secure communications while ensuring the sensing and powering requirements. In particular, the BS transmits dedicated sensing/energy beams in addition to the information beam, which also play the role of artificial noise (AN) for effectively jamming potential eavesdroppers. Building upon this, we maximize the secrecy rate at the CU, subject to the maximum \ac{crb} constraints for target sensing and the minimum harvested energy constraints for the ERs. Although the formulated joint beamforming problem is non-convex and challenging to solve, we acquire the optimal solution via the semi-definite relaxation (SDR) and fractional programming techniques together with a one-dimensional (1D) search. Subsequently, we present two alternative designs based on zero-forcing (ZF) beamforming and maximum ratio transmission (MRT), respectively. Finally, our numerical results show that our proposed approaches exploit both the distance-domain resolution of near-field ELAA and the joint beamforming design for enhancing secure communication performance while ensuring the sensing and powering requirements in ISCAP, especially when the CU and the target and ER eavesdroppers are located at the same angle (but different distances) with respect to the BS.
Abstract:With the promotion of chatgpt to the public, Large language models indeed showcase remarkable common sense, reasoning, and planning skills, frequently providing insightful guidance. These capabilities hold significant promise for their application in urban traffic management and control. However, LLMs struggle with addressing traffic issues, especially processing numerical data and interacting with simulations, limiting their potential in solving traffic-related challenges. In parallel, specialized traffic foundation models exist but are typically designed for specific tasks with limited input-output interactions. Combining these models with LLMs presents an opportunity to enhance their capacity for tackling complex traffic-related problems and providing insightful suggestions. To bridge this gap, we present TrafficGPT, a fusion of ChatGPT and traffic foundation models. This integration yields the following key enhancements: 1) empowering ChatGPT with the capacity to view, analyze, process traffic data, and provide insightful decision support for urban transportation system management; 2) facilitating the intelligent deconstruction of broad and complex tasks and sequential utilization of traffic foundation models for their gradual completion; 3) aiding human decision-making in traffic control through natural language dialogues; and 4) enabling interactive feedback and solicitation of revised outcomes. By seamlessly intertwining large language model and traffic expertise, TrafficGPT not only advances traffic management but also offers a novel approach to leveraging AI capabilities in this domain. The TrafficGPT demo can be found in https://github.com/lijlansg/TrafficGPT.git.
Abstract:This paper studies a multi-intelligent-reflecting-surface-(IRS)-enabled integrated sensing and communications (ISAC) system, in which multiple IRSs are installed to help the base station (BS) provide ISAC services at separate line-of-sight (LoS) blocked areas. We focus on the scenario with semi-passive uniform linear array (ULA) IRSsfor sensing, in which each IRS is integrated with dedicated sensors for processing echo signals, and each IRS simultaneously serves one sensing target and one communication user (CU) in its coverage area. In particular, we suppose that the BS sends combined information and dedicated sensing signals for ISAC, and we consider two cases with point and extended targets, in which each IRS aims to estimate the direction-of-arrival (DoA) of the corresponding target and the complete target response matrix, respectively. Under this setup, we first derive the closed-form Cram{\'e}r-Rao bounds (CRBs) for parameters estimation under the two target models. For the point target case, the CRB for AoA estimation is shown to be inversely proportional to the cubic of the number of sensors at each IRS, while for the extended target case, the CRB for target response matrix estimation is proportional to the number of IRS sensors. Next, we consider two different types of CU receivers that can and cannot cancel the interference from dedicated sensing signals prior to information decoding. To achieve fair and optimized sensing performance, we minimize the maximum CRB at all IRSs for the two target cases, via jointly optimizing the transmit beamformers at the BS and the reflective beamformers at the multiple IRSs, subject to the minimum signal-to-interference-plus-noise ratio (SINR) constraints at individual CUs, the maximum transmit power constraint at the BS, and the unit-modulus constraints at the multiple IRSs.
Abstract:This correspondence studies the wireless powered over-the-air computation (AirComp) for achieving sustainable wireless data aggregation (WDA) by integrating AirComp and wireless power transfer (WPT) into a joint design. In particular, we consider that a multi-antenna hybrid access point (HAP) employs the transmit energy beamforming to charge multiple single-antenna low-power wireless devices (WDs) in the downlink, and the WDs use the harvested energy to simultaneously send their messages to the HAP for AirComp in the uplink. Under this setup, we minimize the computation mean square error (MSE), by jointly optimizing the transmit energy beamforming and the receive AirComp beamforming at the HAP, as well as the transmit power at the WDs, subject to the maximum transmit power constraint at the HAP and the wireless energy harvesting constraints at individual WDs. To tackle the non-convex computation MSE minimization problem, we present an efficient algorithm to find a converged high-quality solution by using the alternating optimization technique. Numerical results show that the proposed joint WPT-AirComp approach significantly reduces the computation MSE, as compared to other benchmark schemes.