Abstract:This study focuses on the analysis of signals containing multiple components with crossover instantaneous frequencies (IF). This problem was initially solved with the chirplet transform (CT). Also, it can be sharpened by adding the synchrosqueezing step, which is called the synchrosqueezed chirplet transform (SCT). However, we found that the SCT goes wrong with the high chirp modulation signal due to the wrong estimation of the IF. In this paper, we present the improvement of the post-transformation of the CT. The main goal of this paper is to amend the estimation introduced in the SCT and carry out the high-order synchrosqueezed chirplet transform. The proposed method reduces the wrong estimation when facing a stronger variety of chirp-modulated multi-component signals. The theoretical analysis of the new reassignment ingredient is provided. Numerical experiments on some synthetic signals are presented to verify the effectiveness of the proposed high-order SCT.
Abstract:Alternating Diffusion (AD) is a commonly applied diffusion-based sensor fusion algorithm. While it has been successfully applied to various problems, its computational burden remains a limitation. Inspired by the landmark diffusion idea considered in the Robust and Scalable Embedding via Landmark Diffusion (ROSELAND), we propose a variation of AD, called Landmark AD (LAD), which captures the essence of AD while offering superior computational efficiency. We provide a series of theoretical analyses of LAD under the manifold setup and apply it to the automatic sleep stage annotation problem with two electroencephalogram channels to demonstrate its application.
Abstract:Modern reinforcement learning (RL) often faces an enormous state-action space. Existing analytical results are typically for settings with a small number of state-actions, or simple models such as linearly modeled Q-functions. To derive statistically efficient RL policies handling large state-action spaces, with more general Q-functions, some recent works have considered nonlinear function approximation using kernel ridge regression. In this work, we derive sample complexities for kernel based Q-learning when a generative model exists. We propose a nonparametric Q-learning algorithm which finds an $\epsilon$-optimal policy in an arbitrarily large scale discounted MDP. The sample complexity of the proposed algorithm is order optimal with respect to $\epsilon$ and the complexity of the kernel (in terms of its information gain). To the best of our knowledge, this is the first result showing a finite sample complexity under such a general model.