Graduate Program of Data Science, National Taiwan University and Academia Sinica, Taipei, Taiwan, Department of Mathematics, National Taiwan University, Taipei, Taiwan
Abstract:This study focuses on the analysis of signals containing multiple components with crossover instantaneous frequencies (IF). This problem was initially solved with the chirplet transform (CT). Also, it can be sharpened by adding the synchrosqueezing step, which is called the synchrosqueezed chirplet transform (SCT). However, we found that the SCT goes wrong with the high chirp modulation signal due to the wrong estimation of the IF. In this paper, we present the improvement of the post-transformation of the CT. The main goal of this paper is to amend the estimation introduced in the SCT and carry out the high-order synchrosqueezed chirplet transform. The proposed method reduces the wrong estimation when facing a stronger variety of chirp-modulated multi-component signals. The theoretical analysis of the new reassignment ingredient is provided. Numerical experiments on some synthetic signals are presented to verify the effectiveness of the proposed high-order SCT.
Abstract:With recent advances in deep learning algorithms, computer-assisted healthcare services have rapidly grown, especially for those that combine with mobile devices. Such a combination enables wearable and portable services for continuous measurements and facilitates real-time disease alarm based on physiological signals, e.g., cardiac arrhythmias (CAs) from electrocardiography (ECG). However, long-term and continuous monitoring confronts challenges arising from limitations of batteries, and the transmission bandwidth of devices. Therefore, identifying an effective way to improve ECG data transmission and storage efficiency has become an emerging topic. In this study, we proposed a deep-learning-based ECG signal super-resolution framework (termed ESRNet) to recover compressed ECG signals by considering the joint effect of signal reconstruction and CA classification accuracies. In our experiments, we downsampled the ECG signals from the CPSC 2018 dataset and subsequently evaluated the super-resolution performance by both reconstruction errors and classification accuracies. Experimental results showed that the proposed ESRNet framework can well reconstruct ECG signals from the 10-times compressed ones. Moreover, approximately half of the CA recognition accuracies were maintained within the ECG signals recovered by the ESRNet. The promising results confirm that the proposed ESRNet framework can be suitably used as a front-end process to reconstruct compressed ECG signals in real-world CA recognition scenarios.