Abstract:The pursuit of optimal trade-offs in high-dimensional search spaces under stringent computational constraints poses a fundamental challenge for contemporary multi-objective optimization. We develop NeuroPareto, a cohesive architecture that integrates rank-centric filtering, uncertainty disentanglement, and history-conditioned acquisition strategies to navigate complex objective landscapes. A calibrated Bayesian classifier estimates epistemic uncertainty across non-domination tiers, enabling rapid generation of high-quality candidates with minimal evaluation cost. Deep Gaussian Process surrogates further separate predictive uncertainty into reducible and irreducible components, providing refined predictive means and risk-aware signals for downstream selection. A lightweight acquisition network, trained online from historical hypervolume improvements, guides expensive evaluations toward regions balancing convergence and diversity. With hierarchical screening and amortized surrogate updates, the method maintains accuracy while keeping computational overhead low. Experiments on DTLZ and ZDT suites and a subsurface energy extraction task show that NeuroPareto consistently outperforms classifier-enhanced and surrogate-assisted baselines in Pareto proximity and hypervolume.




Abstract:In the advent of the novel coronavirus epidemic since December 2019, governments and authorities have been struggling to make critical decisions under high uncertainty at their best efforts. Composite Monte-Carlo (CMC) simulation is a forecasting method which extrapolates available data which are broken down from multiple correlated/casual micro-data sources into many possible future outcomes by drawing random samples from some probability distributions. For instance, the overall trend and propagation of the infested cases in China are influenced by the temporal-spatial data of the nearby cities around the Wuhan city (where the virus is originated from), in terms of the population density, travel mobility, medical resources such as hospital beds and the timeliness of quarantine control in each city etc. Hence a CMC is reliable only up to the closeness of the underlying statistical distribution of a CMC, that is supposed to represent the behaviour of the future events, and the correctness of the composite data relationships. In this paper, a case study of using CMC that is enhanced by deep learning network and fuzzy rule induction for gaining better stochastic insights about the epidemic development is experimented. Instead of applying simplistic and uniform assumptions for a MC which is a common practice, a deep learning-based CMC is used in conjunction of fuzzy rule induction techniques. As a result, decision makers are benefited from a better fitted MC outputs complemented by min-max rules that foretell about the extreme ranges of future possibilities with respect to the epidemic.