Abstract:We propose an approach to estimate arm and hand dynamics from monocular video by utilizing the relationship between arm and hand. Although monocular full human motion capture technologies have made great progress in recent years, recovering accurate and plausible arm twists and hand gestures from in-the-wild videos still remains a challenge. To solve this problem, our solution is proposed based on the fact that arm poses and hand gestures are highly correlated in most real situations. To fully exploit arm-hand correlation as well as inter-frame information, we carefully design a Spatial-Temporal Parallel Arm-Hand Motion Transformer (PAHMT) to predict the arm and hand dynamics simultaneously. We also introduce new losses to encourage the estimations to be smooth and accurate. Besides, we collect a motion capture dataset including 200K frames of hand gestures and use this data to train our model. By integrating a 2D hand pose estimation model and a 3D human pose estimation model, the proposed method can produce plausible arm and hand dynamics from monocular video. Extensive evaluations demonstrate that the proposed method has advantages over previous state-of-the-art approaches and shows robustness under various challenging scenarios.
Abstract:In Taobao, the largest e-commerce platform in China, billions of items are provided and typically displayed with their images. For better user experience and business effectiveness, Click Through Rate (CTR) prediction in online advertising system exploits abundant user historical behaviors to identify whether a user is interested in a candidate ad. Enhancing behavior representations with user behavior images will help understand user's visual preference and improve the accuracy of CTR prediction greatly. So we propose to model user preference jointly with user behavior ID features and behavior images. However, training with user behavior images brings tens to hundreds of images in one sample, giving rise to a great challenge in both communication and computation. To handle these challenges, we propose a novel and efficient distributed machine learning paradigm called Advanced Model Server (AMS). With the well known Parameter Server (PS) framework, each server node handles a separate part of parameters and updates them independently. AMS goes beyond this and is designed to be capable of learning a unified image descriptor model shared by all server nodes which embeds large images into low dimensional high level features before transmitting images to worker nodes. AMS thus dramatically reduces the communication load and enables the arduous joint training process. Based on AMS, the methods of effectively combining the images and ID features are carefully studied, and then we propose a Deep Image CTR Model. Our approach is shown to achieve significant improvements in both online and offline evaluations, and has been deployed in Taobao display advertising system serving the main traffic.