Abstract:Event extraction (EE) plays an important role in many industrial application scenarios, and high-quality EE methods require a large amount of manual annotation data to train supervised learning models. However, the cost of obtaining annotation data is very high, especially for annotation of domain events, which requires the participation of experts from corresponding domain. So we introduce active learning (AL) technology to reduce the cost of event annotation. But the existing AL methods have two main problems, which make them not well used for event extraction. Firstly, the existing pool-based selection strategies have limitations in terms of computational cost and sample validity. Secondly, the existing evaluation of sample importance lacks the use of local sample information. In this paper, we present a novel deep AL method for EE. We propose a batch-based selection strategy and a Memory-Based Loss Prediction model (MBLP) to select unlabeled samples efficiently. During the selection process, we use an internal-external sample loss ranking method to evaluate the sample importance by using local information. Finally, we propose a delayed training strategy to train the MBLP model. Extensive experiments are performed on three domain datasets, and our method outperforms other state-of-the-art methods.
Abstract:The ability to generate natural-language questions with controlled complexity levels is highly desirable as it further expands the applicability of question generation. In this paper, we propose an end-to-end neural complexity-controllable question generation model, which incorporates a mixture of experts (MoE) as the selector of soft templates to improve the accuracy of complexity control and the quality of generated questions. The soft templates capture question similarity while avoiding the expensive construction of actual templates. Our method introduces a novel, cross-domain complexity estimator to assess the complexity of a question, taking into account the passage, the question, the answer and their interactions. The experimental results on two benchmark QA datasets demonstrate that our QG model is superior to state-of-the-art methods in both automatic and manual evaluation. Moreover, our complexity estimator is significantly more accurate than the baselines in both in-domain and out-domain settings.
Abstract:Event detection (ED) aims at detecting event trigger words in sentences and classifying them into specific event types. In real-world applications, ED typically does not have sufficient labelled data, thus can be formulated as a few-shot learning problem. To tackle the issue of low sample diversity in few-shot ED, we propose a novel knowledge-based few-shot event detection method which uses a definition-based encoder to introduce external event knowledge as the knowledge prior of event types. Furthermore, as external knowledge typically provides limited and imperfect coverage of event types, we introduce an adaptive knowledge-enhanced Bayesian meta-learning method to dynamically adjust the knowledge prior of event types. Experiments show our method consistently and substantially outperforms a number of baselines by at least 15 absolute F1 points under the same few-shot settings.