Abstract:Spatiotemporal learning plays a crucial role in mobile computing techniques to empower smart cites. While existing research has made great efforts to achieve accurate predictions on the overall dataset, they still neglect the significant performance heterogeneity across samples. In this work, we designate the performance heterogeneity as the reason for unfair spatiotemporal learning, which not only degrades the practical functions of models, but also brings serious potential risks to real-world urban applications. To fix this gap, we propose a model-independent Fairness-aware framework for SpatioTemporal Graph learning (FairSTG), which inherits the idea of exploiting advantages of well-learned samples to challenging ones with collaborative mix-up. Specifically, FairSTG consists of a spatiotemporal feature extractor for model initialization, a collaborative representation enhancement for knowledge transfer between well-learned samples and challenging ones, and fairness objectives for immediately suppressing sample-level performance heterogeneity. Experiments on four spatiotemporal datasets demonstrate that our FairSTG significantly improves the fairness quality while maintaining comparable forecasting accuracy. Case studies show FairSTG can counter both spatial and temporal performance heterogeneity by our sample-level retrieval and compensation, and our work can potentially alleviate the risks on spatiotemporal resource allocation for underrepresented urban regions.
Abstract:The air quality inference problem aims to utilize historical data from a limited number of observation sites to infer the air quality index at an unknown location. Considering the sparsity of data due to the high maintenance cost of the stations, good inference algorithms can effectively save the cost and refine the data granularity. While spatio-temporal graph neural networks have made excellent progress on this problem, their non-Euclidean and discrete data structure modeling of reality limits its potential. In this work, we make the first attempt to combine two different spatio-temporal perspectives, fields and graphs, by proposing a new model, Spatio-Temporal Field Neural Network, and its corresponding new framework, Pyramidal Inference. Extensive experiments validate that our model achieves state-of-the-art performance in nationwide air quality inference in the Chinese Mainland, demonstrating the superiority of our proposed model and framework.