Abstract:Detecting sarcasm effectively requires a nuanced understanding of context, including vocal tones and facial expressions. The progression towards multimodal computational methods in sarcasm detection, however, faces challenges due to the scarcity of data. To address this, we present AMuSeD (Attentive deep neural network for MUltimodal Sarcasm dEtection incorporating bi-modal Data augmentation). This approach utilizes the Multimodal Sarcasm Detection Dataset (MUStARD) and introduces a two-phase bimodal data augmentation strategy. The first phase involves generating varied text samples through Back Translation from several secondary languages. The second phase involves the refinement of a FastSpeech 2-based speech synthesis system, tailored specifically for sarcasm to retain sarcastic intonations. Alongside a cloud-based Text-to-Speech (TTS) service, this Fine-tuned FastSpeech 2 system produces corresponding audio for the text augmentations. We also investigate various attention mechanisms for effectively merging text and audio data, finding self-attention to be the most efficient for bimodal integration. Our experiments reveal that this combined augmentation and attention approach achieves a significant F1-score of 81.0% in text-audio modalities, surpassing even models that use three modalities from the MUStARD dataset.
Abstract:This study investigates the acoustic features of sarcasm and disentangles the interplay between the propensity of an utterance being used sarcastically and the presence of prosodic cues signaling sarcasm. Using a dataset of sarcastic utterances compiled from television shows, we analyze the prosodic features within utterances and key phrases belonging to three distinct sarcasm categories (embedded, propositional, and illocutionary), which vary in the degree of semantic cues present, and compare them to neutral expressions. Results show that in phrases where the sarcastic meaning is salient from the semantics, the prosodic cues are less relevant than when the sarcastic meaning is not evident from the semantics, suggesting a trade-off between prosodic and semantic cues of sarcasm at the phrase level. These findings highlight a lessened reliance on prosodic modulation in semantically dense sarcastic expressions and a nuanced interaction that shapes the communication of sarcastic intent.