Abstract:Text relevance or text matching of query and product is an essential technique for the e-commerce search system to ensure that the displayed products can match the intent of the query. Many studies focus on improving the performance of the relevance model in search system. Recently, pre-trained language models like BERT have achieved promising performance on the text relevance task. While these models perform well on the offline test dataset, there are still obstacles to deploy the pre-trained language model to the online system as their high latency. The two-tower model is extensively employed in industrial scenarios, owing to its ability to harmonize performance with computational efficiency. Regrettably, such models present an opaque ``black box'' nature, which prevents developers from making special optimizations. In this paper, we raise deep Bag-of-Words (DeepBoW) model, an efficient and interpretable relevance architecture for Chinese e-commerce. Our approach proposes to encode the query and the product into the sparse BoW representation, which is a set of word-weight pairs. The weight means the important or the relevant score between the corresponding word and the raw text. The relevance score is measured by the accumulation of the matched word between the sparse BoW representation of the query and the product. Compared to popular dense distributed representation that usually suffers from the drawback of black-box, the most advantage of the proposed representation model is highly explainable and interventionable, which is a superior advantage to the deployment and operation of online search engines. Moreover, the online efficiency of the proposed model is even better than the most efficient inner product form of dense representation ...
Abstract:The search engine plays a fundamental role in online e-commerce systems, to help users find the products they want from the massive product collections. Relevance is an essential requirement for e-commerce search, since showing products that do not match search query intent will degrade user experience. With the existence of vocabulary gap between user language of queries and seller language of products, measuring semantic relevance is necessary and neural networks are engaged to address this task. However, semantic relevance is different from click-through rate prediction in that no direct training signal is available. Most previous attempts learn relevance models from user click-through data that are cheap and abundant. Unfortunately, click behavior is noisy and misleading, which is affected by not only relevance but also factors including price, image and attractive titles. Therefore, it is challenging but valuable to learn relevance models from click-through data. In this paper, we propose a new relevance learning framework that concentrates on how to train a relevance model from the weak supervision of click-through data. Different from previous efforts that treat samples as either relevant or irrelevant, we construct more fine-grained samples for training. We propose a novel way to consider samples of different relevance confidence, and come up with a new training objective to learn a robust relevance model with desirable score distribution. The proposed model is evaluated on offline annotated data and online A/B testing, and it achieves both promising performance and high computational efficiency. The model has already been deployed online, serving the search traffic of Taobao for over a year.