Abstract:Recently developed generative methods, including invertible rescaling network (IRN) based and generative adversarial network (GAN) based methods, have demonstrated exceptional performance in image rescaling. However, IRN-based methods tend to produce over-smoothed results, while GAN-based methods easily generate fake details, which thus hinders their real applications. To address this issue, we propose Boundary-aware Decoupled Flow Networks (BDFlow) to generate realistic and visually pleasing results. Unlike previous methods that model high-frequency information as standard Gaussian distribution directly, our BDFlow first decouples the high-frequency information into \textit{semantic high-frequency} that adheres to a Boundary distribution and \textit{non-semantic high-frequency} counterpart that adheres to a Gaussian distribution. Specifically, to capture semantic high-frequency parts accurately, we use Boundary-aware Mask (BAM) to constrain the model to produce rich textures, while non-semantic high-frequency part is randomly sampled from a Gaussian distribution.Comprehensive experiments demonstrate that our BDFlow significantly outperforms other state-of-the-art methods while maintaining lower complexity. Notably, our BDFlow improves the PSNR by $4.4$ dB and the SSIM by $0.1$ on average over GRAIN, utilizing only 74\% of the parameters and 20\% of the computation. The code will be available at https://github.com/THU-Kingmin/BAFlow.
Abstract:The widespread adoption of face recognition has led to increasing privacy concerns, as unauthorized access to face images can expose sensitive personal information. This paper explores face image protection against viewing and recovery attacks. Inspired by image compression, we propose creating a visually uninformative face image through feature subtraction between an original face and its model-produced regeneration. Recognizable identity features within the image are encouraged by co-training a recognition model on its high-dimensional feature representation. To enhance privacy, the high-dimensional representation is crafted through random channel shuffling, resulting in randomized recognizable images devoid of attacker-leverageable texture details. We distill our methodologies into a novel privacy-preserving face recognition method, MinusFace. Experiments demonstrate its high recognition accuracy and effective privacy protection. Its code is available at https://github.com/Tencent/TFace.