Abstract:The paper presents a new approach for constructing a library of optimal trajectories for two robotic manipulators, Two-Arm Optimal Control and Avoidance Library (TOCALib). The optimisation takes into account kinodynamic and other constraints within the FROST framework. The novelty of the method lies in the consideration of collisions using the DCOL method, which allows obtaining symbolic expressions for assessing the presence of collisions and using them in gradient-based optimization control methods. The proposed approach allowed the implementation of complex bimanual manipulations. In this paper we used Mobile Aloha as an example of TOCALib application. The approach can be extended to other bimanual robots, as well as to gait control of bipedal robots. It can also be used to construct training data for machine learning tasks for manipulation.
Abstract:The growing use of robots in urban environments has raised concerns about potential safety hazards, especially in public spaces where humans and robots may interact. In this paper, we present a system for safe human-robot interaction that combines an infrared (IR) camera with a wearable marker and airflow potential field. IR cameras enable real-time detection and tracking of humans in challenging environments, while controlled airflow creates a physical barrier that guides humans away from dangerous proximity to robots without the need for wearable devices. A preliminary experiment was conducted to measure the accuracy of the perception of safety barriers rendered by controlled air pressure. In a second experiment, we evaluated our approach in an imitation scenario of an interaction between an inattentive person and an autonomous robotic system. Experimental results show that the proposed system significantly improves a participant's ability to maintain a safe distance from the operating robot compared to trials without the system.