Abstract:Variations of target appearance such as deformations, illumination variance, occlusion, etc., are the major challenges of visual object tracking that negatively impact the performance of a tracker. An effective method to tackle these challenges is template update, which updates the template to reflect the change of appearance in the target object during tracking. However, with template updates, inadequate quality of new templates or inappropriate timing of updates may induce a model drift problem, which severely degrades the tracking performance. Here, we propose BackTrack, a robust and reliable method to quantify the confidence of the candidate template by backward tracking it on the past frames. Based on the confidence score of candidates from BackTrack, we can update the template with a reliable candidate at the right time while rejecting unreliable candidates. BackTrack is a generic template update scheme and is applicable to any template-based trackers. Extensive experiments on various tracking benchmarks verify the effectiveness of BackTrack over existing template update algorithms, as it achieves SOTA performance on various tracking benchmarks.
Abstract:Optimization for low-precision neural network is an important technique for deep convolutional neural network models to be deployed to mobile devices. In order to realize convolutional layers with the simple bit-wise operations, both activation and weight parameters need to be quantized with a low bit-precision. In this paper, we propose a novel optimization method for low-precision neural network which trains both activation quantization parameters and the quantized model weights. We parameterize the quantization intervals of the weights and the activations and train the parameters with the full-precision weights by directly minimizing the training loss rather than minimizing the quantization error. Thanks to the joint optimization of quantization parameters and model weights, we obtain the highly accurate low-precision network given a target bitwidth. We demonstrated the effectiveness of our method on two benchmarks: CIFAR-10 and ImageNet.