Abstract:Information Extraction (IE) is crucial for converting unstructured data into structured formats like Knowledge Graphs (KGs). A key task within IE is Relation Extraction (RE), which identifies relationships between entities in text. Various RE methods exist, including supervised, unsupervised, weakly supervised, and rule-based approaches. Recent studies leveraging pre-trained language models (PLMs) have shown significant success in this area. In the current era dominated by Large Language Models (LLMs), fine-tuning these models can overcome limitations associated with zero-shot LLM prompting-based RE methods, especially regarding domain adaptation challenges and identifying implicit relations between entities in sentences. These implicit relations, which cannot be easily extracted from a sentence's dependency tree, require logical inference for accurate identification. This work explores the performance of fine-tuned LLMs and their integration into the Retrieval Augmented-based (RAG) RE approach to address the challenges of identifying implicit relations at the sentence level, particularly when LLMs act as generators within the RAG framework. Empirical evaluations on the TACRED, TACRED-Revisited (TACREV), Re-TACRED, and SemEVAL datasets show significant performance improvements with fine-tuned LLMs, including Llama2-7B, Mistral-7B, and T5 (Large). Notably, our approach achieves substantial gains on SemEVAL, where implicit relations are common, surpassing previous results on this dataset. Additionally, our method outperforms previous works on TACRED, TACREV, and Re-TACRED, demonstrating exceptional performance across diverse evaluation scenarios.
Abstract:Ontology matching is defined as finding a relationship or correspondence between two or more entities in two or more ontologies. To solve the interoperability problem of the domain ontologies, semantically similar entities in these ontologies must be found and aligned before merging them. GraphMatcher, developed in this study, is an ontology matching system using a graph attention approach to compute higher-level representation of a class together with its surrounding terms. The GraphMatcher has obtained remarkable results in in the Ontology Alignment Evaluation Initiative (OAEI) 2022 conference track. Its codes are available at ~\url{https://github.com/sefeoglu/gat_ontology_matching}.
Abstract:Information Extraction (IE) is a transformative process that converts unstructured text data into a structured format by employing entity and relation extraction (RE) methodologies. The identification of the relation between a pair of entities plays a crucial role within this framework. Despite the existence of various techniques for relation extraction, their efficacy heavily relies on access to labeled data and substantial computational resources. In addressing these challenges, Large Language Models (LLMs) emerge as promising solutions; however, they might return hallucinating responses due to their own training data. To overcome these limitations, Retrieved-Augmented Generation-based Relation Extraction (RAG4RE) in this work is proposed, offering a pathway to enhance the performance of relation extraction tasks. This work evaluated the effectiveness of our RAG4RE approach utilizing different LLMs. Through the utilization of established benchmarks, such as TACRED, TACREV, Re-TACRED, and SemEval RE datasets, our aim is to comprehensively evaluate the efficacy of our RAG4RE approach. In particularly, we leverage prominent LLMs including Flan T5, Llama2, and Mistral in our investigation. The results of our study demonstrate that our RAG4RE approach surpasses performance of traditional RE approaches based solely on LLMs, particularly evident in the TACRED dataset and its variations. Furthermore, our approach exhibits remarkable performance compared to previous RE methodologies across both TACRED and TACREV datasets, underscoring its efficacy and potential for advancing RE tasks in natural language processing.
Abstract:Representing unstructured data in a structured form is most significant for information system management to analyze and interpret it. To do this, the unstructured data might be converted into Knowledge Graphs, by leveraging an information extraction pipeline whose main tasks are named entity recognition and relation extraction. This thesis aims to develop a novel continual relation extraction method to identify relations (interconnections) between entities in a data stream coming from the real world. Domain-specific data of this thesis is corona news from German and Austrian newspapers.
Abstract:Information resources such as newspapers have produced unstructured text data in various languages related to the corona outbreak since December 2019. Analyzing these unstructured texts is time-consuming without representing them in a structured format; therefore, representing them in a structured format is crucial. An information extraction pipeline with essential tasks -- named entity tagging and relation extraction -- to accomplish this goal might be applied to these texts. This study proposes a data annotation pipeline to generate training data from corona news articles, including generic and domain-specific entities. Named entity recognition models are trained on this annotated corpus and then evaluated on test sentences manually annotated by domain experts evaluating the performance of a trained model. The code base and demonstration are available at https://github.com/sefeoglu/coronanews-ner.git.