Abstract:Since the advent of Deepfakes in digital media, the development of robust and reliable detection mechanism is urgently called for. In this study, we explore a novel approach to Deepfake detection by utilizing electroencephalography (EEG) measured from the neural processing of a human participant who viewed and categorized Deepfake stimuli from the FaceForensics++ datset. These measurements serve as input features to a binary support vector classifier, trained to discriminate between real and manipulated facial images. We examine whether EEG data can inform Deepfake detection and also if it can provide a generalized representation capable of identifying Deepfakes beyond the training domain. Our preliminary results indicate that human neural processing signals can be successfully integrated into Deepfake detection frameworks and hint at the potential for a generalized neural representation of artifacts in computer generated faces. Moreover, our study provides next steps towards the understanding of how digital realism is embedded in the human cognitive system, possibly enabling the development of more realistic digital avatars in the future.
Abstract:In the ever-evolving field of Artificial Intelligence, a critical challenge has been to decipher the decision-making processes within the so-called "black boxes" in deep learning. Over recent years, a plethora of methods have emerged, dedicated to explaining decisions across diverse tasks. Particularly in tasks like image classification, these methods typically identify and emphasize the pivotal pixels that most influence a classifier's prediction. Interestingly, this approach mirrors human behavior: when asked to explain our rationale for classifying an image, we often point to the most salient features or aspects. Capitalizing on this parallel, our research embarked on a user-centric study. We sought to objectively measure the interpretability of three leading explanation methods: (1) Prototypical Part Network, (2) Occlusion, and (3) Layer-wise Relevance Propagation. Intriguingly, our results highlight that while the regions spotlighted by these methods can vary widely, they all offer humans a nearly equivalent depth of understanding. This enables users to discern and categorize images efficiently, reinforcing the value of these methods in enhancing AI transparency.
Abstract:We introduce a Gaussian Prototype Layer for gradient-based prototype learning and demonstrate two novel network architectures for explainable segmentation one of which relies on region proposals. Both models are evaluated on agricultural datasets. While Gaussian Mixture Models (GMMs) have been used to model latent distributions of neural networks before, they are typically fitted using the EM algorithm. Instead, the proposed prototype layer relies on gradient-based optimization and hence allows for end-to-end training. This facilitates development and allows to use the full potential of a trainable deep feature extractor. We show that it can be used as a novel building block for explainable neural networks. We employ our Gaussian Prototype Layer in (1) a model where prototypes are detected in the latent grid and (2) a model inspired by Fast-RCNN with SLIC superpixels as region proposals. The earlier achieves a similar performance as compared to the state-of-the art while the latter has the benefit of a more precise prototype localization that comes at the cost of slightly lower accuracies. By introducing a gradient-based GMM layer we combine the benefits of end-to-end training with the simplicity and theoretical foundation of GMMs which will allow to adapt existing semi-supervised learning strategies for prototypical part models in future.
Abstract:The emerging field of eXplainable Artificial Intelligence (XAI) aims to bring transparency to today's powerful but opaque deep learning models. While local XAI methods explain individual predictions in form of attribution maps, thereby identifying where important features occur (but not providing information about what they represent), global explanation techniques visualize what concepts a model has generally learned to encode. Both types of methods thus only provide partial insights and leave the burden of interpreting the model's reasoning to the user. Only few contemporary techniques aim at combining the principles behind both local and global XAI for obtaining more informative explanations. Those methods, however, are often limited to specific model architectures or impose additional requirements on training regimes or data and label availability, which renders the post-hoc application to arbitrarily pre-trained models practically impossible. In this work we introduce the Concept Relevance Propagation (CRP) approach, which combines the local and global perspectives of XAI and thus allows answering both the "where" and "what" questions for individual predictions, without additional constraints imposed. We further introduce the principle of Relevance Maximization for finding representative examples of encoded concepts based on their usefulness to the model. We thereby lift the dependency on the common practice of Activation Maximization and its limitations. We demonstrate the capabilities of our methods in various settings, showcasing that Concept Relevance Propagation and Relevance Maximization lead to more human interpretable explanations and provide deep insights into the model's representations and reasoning through concept atlases, concept composition analyses, and quantitative investigations of concept subspaces and their role in fine-grained decision making.
Abstract:Despite significant advances in machine learning, decision-making of artificial agents is still not perfect and often requires post-hoc human interventions. If the prediction of a model relies on unreasonable factors it is desirable to remove their effect. Deep interactive prototype adjustment enables the user to give hints and correct the model's reasoning. In this paper, we demonstrate that prototypical-part models are well suited for this task as their prediction is based on prototypical image patches that can be interpreted semantically by the user. It shows that even correct classifications can rely on unreasonable prototypes that result from confounding variables in a dataset. Hence, we propose simple yet effective interaction schemes for inference adjustment: The user is consulted interactively to identify faulty prototypes. Non-object prototypes can be removed by prototype masking or a custom mode of deselection training. Interactive prototype rejection allows machine learning na\"{i}ve users to adjust the logic of reasoning without compromising the accuracy.
Abstract:The performance of visual quality prediction models is commonly assumed to be closely tied to their ability to capture perceptually relevant image aspects. Models are thus either based on sophisticated feature extractors carefully designed from extensive domain knowledge or optimized through feature learning. In contrast to this, we find feature extractors constructed from random noise to be sufficient to learn a linear regression model whose quality predictions reach high correlations with human visual quality ratings, on par with a model with learned features. We analyze this curious result and show that besides the quality of feature extractors also their quantity plays a crucial role - with top performances only being achieved in highly overparameterized models.
Abstract:We present a deep neural network-based approach to image quality assessment (IQA). The network is trained end-to-end and comprises ten convolutional layers and five pooling layers for feature extraction, and two fully connected layers for regression, which makes it significantly deeper than related IQA models. Unique features of the proposed architecture are that: 1) with slight adaptations it can be used in a no-reference (NR) as well as in a full-reference (FR) IQA setting and 2) it allows for joint learning of local quality and local weights, i.e., relative importance of local quality to the global quality estimate, in an unified framework. Our approach is purely data-driven and does not rely on hand-crafted features or other types of prior domain knowledge about the human visual system or image statistics. We evaluate the proposed approach on the LIVE, CISQ, and TID2013 databases as well as the LIVE In the wild image quality challenge database and show superior performance to state-of-the-art NR and FR IQA methods. Finally, cross-database evaluation shows a high ability to generalize between different databases, indicating a high robustness of the learned features.
Abstract:In most practical situations, the compression or transmission of images and videos creates distortions that will eventually be perceived by a human observer. Vice versa, image and video restoration techniques, such as inpainting or denoising, aim to enhance the quality of experience of human viewers. Correctly assessing the similarity between an image and an undistorted reference image as subjectively experienced by a human viewer can thus lead to significant improvements in any transmission, compression, or restoration system. This paper introduces the Haar wavelet-based perceptual similarity index (HaarPSI), a novel and computationally inexpensive similarity measure for full reference image quality assessment. The HaarPSI utilizes the coefficients obtained from a Haar wavelet decomposition to assess local similarities between two images, as well as the relative importance of image areas. The consistency of the HaarPSI with the human quality of experience was validated on four large benchmark databases containing thousands of differently distorted images. On these databases, the HaarPSI achieves higher correlations with human opinion scores than state-of-the-art full reference similarity measures like the structural similarity index (SSIM), the feature similarity index (FSIM), and the visual saliency-based index (VSI). Along with the simple computational structure and the short execution time, these experimental results suggest a high applicability of the HaarPSI in real world tasks.