Abstract:Higher education plays a critical role in driving an innovative economy by equipping students with knowledge and skills demanded by the workforce. While researchers and practitioners have developed data systems to track detailed occupational skills, such as those established by the U.S. Department of Labor (DOL), much less effort has been made to document skill development in higher education at a similar granularity. Here, we fill this gap by presenting a longitudinal dataset of skills inferred from over three million course syllabi taught at nearly three thousand U.S. higher education institutions. To construct this dataset, we apply natural language processing to extract from course descriptions detailed workplace activities (DWAs) used by the DOL to describe occupations. We then aggregate these DWAs to create skill profiles for institutions and academic majors. Our dataset offers a large-scale representation of college-educated workers and their role in the economy. To showcase the utility of this dataset, we use it to 1) compare the similarity of skills taught and skills in the workforce according to the US Bureau of Labor Statistics, 2) estimate gender differences in acquired skills based on enrollment data, 3) depict temporal trends in the skills taught in social science curricula, and 4) connect college majors' skill distinctiveness to salary differences of graduates. Overall, this dataset can enable new research on the source of skills in the context of workforce development and provide actionable insights for shaping the future of higher education to meet evolving labor demands especially in the face of new technologies.
Abstract:Machine learning is traditionally studied at the model level: researchers measure and improve the accuracy, robustness, bias, efficiency, and other dimensions of specific models. In practice, the societal impact of machine learning is determined by the surrounding context of machine learning deployments. To capture this, we introduce ecosystem-level analysis: rather than analyzing a single model, we consider the collection of models that are deployed in a given context. For example, ecosystem-level analysis in hiring recognizes that a job candidate's outcomes are not only determined by a single hiring algorithm or firm but instead by the collective decisions of all the firms they applied to. Across three modalities (text, images, speech) and 11 datasets, we establish a clear trend: deployed machine learning is prone to systemic failure, meaning some users are exclusively misclassified by all models available. Even when individual models improve at the population level over time, we find these improvements rarely reduce the prevalence of systemic failure. Instead, the benefits of these improvements predominantly accrue to individuals who are already correctly classified by other models. In light of these trends, we consider medical imaging for dermatology where the costs of systemic failure are especially high. While traditional analyses reveal racial performance disparities for both models and humans, ecosystem-level analysis reveals new forms of racial disparity in model predictions that do not present in human predictions. These examples demonstrate ecosystem-level analysis has unique strengths for characterizing the societal impact of machine learning.