Abstract:The 2021 Image Similarity Challenge introduced a dataset to serve as a new benchmark to evaluate recent image copy detection methods. There were 200 participants to the competition. This paper presents a quantitative and qualitative analysis of the top submissions. It appears that the most difficult image transformations involve either severe image crops or hiding into unrelated images, combined with local pixel perturbations. The key algorithmic elements in the winning submissions are: training on strong augmentations, self-supervised learning, score normalization, explicit overlay detection, and global descriptor matching followed by pairwise image comparison.
Abstract:This article presents an efficient way to produce feature-rich, high-dimensionality embedding spaces from real-life images. The features produced are designed to be independent from augmentations used in real-life cases which appear on social media. Our approach uses convolutional neural networks (CNN) to produce an embedding space. An ArcFace head was used to train the model by employing automatically produced augmentations. Additionally, we present a way to make an ensemble out of different embeddings containing the same semantic information, a way to normalize the resulting embedding using an external dataset, and a novel way to perform quick training of these models with a high number of classes in the ArcFace head. Using this approach we achieved the 2nd place in the 2021 Facebook AI Image Similarity Challenge: Descriptor Track.