Abstract:This study presents a deep-learning framework for controlling multichannel acoustic feedback in audio devices. Traditional digital signal processing methods struggle with convergence when dealing with highly correlated noise such as feedback. We introduce a Convolutional Recurrent Network that efficiently combines spatial and temporal processing, significantly enhancing speech enhancement capabilities with lower computational demands. Our approach utilizes three training methods: In-a-Loop Training, Teacher Forcing, and a Hybrid strategy with a Multichannel Wiener Filter, optimizing performance in complex acoustic environments. This scalable framework offers a robust solution for real-world applications, making significant advances in Acoustic Feedback Control technology.
Abstract:We introduce a novel all neural model for low-latency directional speech extraction. The model uses direction of arrival (DOA) embeddings from a predefined spatial grid, which are transformed and fused into a recurrent neural network based speech extraction model. This process enables the model to effectively extract speech from a specified DOA. Unlike previous methods that relied on hand-crafted directional features, the proposed model trains DOA embeddings from scratch using speech enhancement loss, making it suitable for low-latency scenarios. Additionally, it operates at a high frame rate, taking in DOA with each input frame, which brings in the capability of quickly adapting to changing scene in highly dynamic real-world scenarios. We provide extensive evaluation to demonstrate the model's efficacy in directional speech extraction, robustness to DOA mismatch, and its capability to quickly adapt to abrupt changes in DOA.