Abstract:Knowledge graphs (KGs) are increasingly utilized for data integration, representation, and visualization. While KG population is critical, it is often costly, especially when data must be extracted from unstructured text in natural language, which presents challenges, such as ambiguity and complex interpretations. Large Language Models (LLMs) offer promising capabilities for such tasks, excelling in natural language understanding and content generation. However, their tendency to ``hallucinate'' can produce inaccurate outputs. Despite these limitations, LLMs offer rapid and scalable processing of natural language data, and with prompt engineering and fine-tuning, they can approximate human-level performance in extracting and structuring data for KGs. This study investigates LLM effectiveness for the KG population, focusing on the Enslaved.org Hub Ontology. In this paper, we report that compared to the ground truth, LLM's can extract ~90% of triples, when provided a modular ontology as guidance in the prompts.
Abstract:KnowWhereGraph is one of the largest fully publicly available geospatial knowledge graphs. It includes data from 30 layers on natural hazards (e.g., hurricanes, wildfires), climate variables (e.g., air temperature, precipitation), soil properties, crop and land-cover types, demographics, and human health, various place and region identifiers, among other themes. These have been leveraged through the graph by a variety of applications to address challenges in food security and agricultural supply chains; sustainability related to soil conservation practices and farm labor; and delivery of emergency humanitarian aid following a disaster. In this paper, we introduce the ontology that acts as the schema for KnowWhereGraph. This broad overview provides insight into the requirements and design specifications for the graph and its schema, including the development methodology (modular ontology modeling) and the resources utilized to implement, materialize, and deploy KnowWhereGraph with its end-user interfaces and public query SPARQL endpoint.
Abstract:Integrating structured knowledge from tabular formats poses significant challenges within natural language processing (NLP), mainly when dealing with complex, semi-structured tables like those found in the FeTaQA dataset. These tables require advanced methods to interpret and generate meaningful responses accurately. Traditional approaches, such as SQL and SPARQL, often fail to fully capture the semantics of such data, especially in the presence of irregular table structures like web tables. This paper addresses these challenges by proposing a novel approach that extracts triples straightforward from tabular data and integrates it with a retrieval-augmented generation (RAG) model to enhance the accuracy, coherence, and contextual richness of responses generated by a fine-tuned GPT-3.5-turbo-0125 model. Our approach significantly outperforms existing baselines on the FeTaQA dataset, particularly excelling in Sacre-BLEU and ROUGE metrics. It effectively generates contextually accurate and detailed long-form answers from tables, showcasing its strength in complex data interpretation.
Abstract:Ontology alignment, a critical process in the Semantic Web for detecting relationships between different ontologies, has traditionally focused on identifying so-called "simple" 1-to-1 relationships through class labels and properties comparison. The more practically useful exploration of more complex alignments remains a hard problem to automate, and as such is largely underexplored, i.e. in application practice it is usually done manually by ontology and domain experts. Recently, the surge in Natural Language Processing (NLP) capabilities, driven by advancements in Large Language Models (LLMs), presents new opportunities for enhancing ontology engineering practices, including ontology alignment tasks. This paper investigates the application of LLM technologies to tackle the complex ontology alignment challenge. Leveraging a prompt-based approach and integrating rich ontology content so-called modules our work constitutes a significant advance towards automating the complex alignment task.
Abstract:This study evaluates the applicability and efficiency of ChatGPT for ontology alignment using a naive approach. ChatGPT's output is compared to the results of the Ontology Alignment Evaluation Initiative 2022 campaign using conference track ontologies. This comparison is intended to provide insights into the capabilities of a conversational large language model when used in a naive way for ontology matching, and to investigate the potential advantages and disadvantages of this approach.