Abstract:Knowledge graphs (KGs) are increasingly utilized for data integration, representation, and visualization. While KG population is critical, it is often costly, especially when data must be extracted from unstructured text in natural language, which presents challenges, such as ambiguity and complex interpretations. Large Language Models (LLMs) offer promising capabilities for such tasks, excelling in natural language understanding and content generation. However, their tendency to ``hallucinate'' can produce inaccurate outputs. Despite these limitations, LLMs offer rapid and scalable processing of natural language data, and with prompt engineering and fine-tuning, they can approximate human-level performance in extracting and structuring data for KGs. This study investigates LLM effectiveness for the KG population, focusing on the Enslaved.org Hub Ontology. In this paper, we report that compared to the ground truth, LLM's can extract ~90% of triples, when provided a modular ontology as guidance in the prompts.
Abstract:Geospatial Knowledge Graphs (GeoKGs) have become integral to the growing field of Geospatial Artificial Intelligence. Initiatives like the U.S. National Science Foundation's Open Knowledge Network program aim to create an ecosystem of nation-scale, cross-disciplinary GeoKGs that provide AI-ready geospatial data aligned with FAIR principles. However, building this infrastructure presents key challenges, including 1) managing large volumes of data, 2) the computational complexity of discovering topological relations via SPARQL, and 3) conflating multi-scale raster and vector data. Discrete Global Grid Systems (DGGS) help tackle these issues by offering efficient data integration and representation strategies. The KnowWhereGraph utilizes Google's S2 Geometry -- a DGGS framework -- to enable efficient multi-source data processing, qualitative spatial querying, and cross-graph integration. This paper outlines the implementation of S2 within KnowWhereGraph, emphasizing its role in topologically enriching and semantically compressing data. Ultimately, this work demonstrates the potential of DGGS frameworks, particularly S2, for building scalable GeoKGs.
Abstract:KnowWhereGraph is one of the largest fully publicly available geospatial knowledge graphs. It includes data from 30 layers on natural hazards (e.g., hurricanes, wildfires), climate variables (e.g., air temperature, precipitation), soil properties, crop and land-cover types, demographics, and human health, various place and region identifiers, among other themes. These have been leveraged through the graph by a variety of applications to address challenges in food security and agricultural supply chains; sustainability related to soil conservation practices and farm labor; and delivery of emergency humanitarian aid following a disaster. In this paper, we introduce the ontology that acts as the schema for KnowWhereGraph. This broad overview provides insight into the requirements and design specifications for the graph and its schema, including the development methodology (modular ontology modeling) and the resources utilized to implement, materialize, and deploy KnowWhereGraph with its end-user interfaces and public query SPARQL endpoint.