Abstract:Large language models (LLMs) are vulnerable to universal jailbreaks-prompting strategies that systematically bypass model safeguards and enable users to carry out harmful processes that require many model interactions, like manufacturing illegal substances at scale. To defend against these attacks, we introduce Constitutional Classifiers: safeguards trained on synthetic data, generated by prompting LLMs with natural language rules (i.e., a constitution) specifying permitted and restricted content. In over 3,000 estimated hours of red teaming, no red teamer found a universal jailbreak that could extract information from an early classifier-guarded LLM at a similar level of detail to an unguarded model across most target queries. On automated evaluations, enhanced classifiers demonstrated robust defense against held-out domain-specific jailbreaks. These classifiers also maintain deployment viability, with an absolute 0.38% increase in production-traffic refusals and a 23.7% inference overhead. Our work demonstrates that defending against universal jailbreaks while maintaining practical deployment viability is tractable.
Abstract:Federated learning (FL) is increasingly becoming the default approach for training machine learning models across decentralized Internet-of-Things (IoT) devices. A key advantage of FL is that no raw data are communicated across the network, providing an immediate layer of privacy. Despite this, recent works have demonstrated that data reconstruction can be done with the locally trained model updates which are communicated across the network. However, many of these works have limitations with regard to how the gradients are computed in backpropagation. In this work, we demonstrate that the model weights shared in FL can expose revealing information about the local data distributions of IoT devices. This leakage could expose sensitive information to malicious actors in a distributed system. We further discuss results which show that injecting noise into model weights is ineffective at preventing data leakage without seriously harming the global model accuracy.