Abstract:Hyperspectral Image Classification (HSC) is a challenging task due to the high dimensionality and complex nature of Hyperspectral (HS) data. Traditional Machine Learning approaches while effective, face challenges in real-world data due to varying optimal feature sets, subjectivity in human-driven design, biases, and limitations. Traditional approaches encounter the curse of dimensionality, struggle with feature selection and extraction, lack spatial information consideration, exhibit limited robustness to noise, face scalability issues, and may not adapt well to complex data distributions. In recent years, Deep Learning (DL) techniques have emerged as powerful tools for addressing these challenges. This survey provides a comprehensive overview of the current trends and future prospects in HSC, focusing on the advancements from DL models to the emerging use of Transformers. We review the key concepts, methodologies, and state-of-the-art approaches in DL for HSC. We explore the potential of Transformer-based models in HSC, outlining their benefits and challenges. We also delve into emerging trends in HSC, as well as thorough discussions on Explainable AI and Interoperability concepts along with Diffusion Models (image denoising, feature extraction, and image fusion). Lastly, we address several open challenges and research questions pertinent to HSC. Comprehensive experimental results have been undertaken using three HS datasets to verify the efficacy of various conventional DL models and Transformers. Finally, we outline future research directions and potential applications that can further enhance the accuracy and efficiency of HSC. The Source code is available at \href{https://github.com/mahmad00/Conventional-to-Transformer-for-Hyperspectral-Image-Classification-Survey-2024}{github.com/mahmad00}.
Abstract:3D Swin Transformer (3D-ST) known for its hierarchical attention and window-based processing, excels in capturing intricate spatial relationships within images. Spatial-spectral Transformer (SST), meanwhile, specializes in modeling long-range dependencies through self-attention mechanisms. Therefore, this paper introduces a novel method: an attentional fusion of these two transformers to significantly enhance the classification performance of Hyperspectral Images (HSIs). What sets this approach apart is its emphasis on the integration of attentional mechanisms from both architectures. This integration not only refines the modeling of spatial and spectral information but also contributes to achieving more precise and accurate classification results. The experimentation and evaluation of benchmark HSI datasets underscore the importance of employing disjoint training, validation, and test samples. The results demonstrate the effectiveness of the fusion approach, showcasing its superiority over traditional methods and individual transformers. Incorporating disjoint samples enhances the robustness and reliability of the proposed methodology, emphasizing its potential for advancing hyperspectral image classification.
Abstract:Disjoint sampling is critical for rigorous and unbiased evaluation of state-of-the-art (SOTA) models. When training, validation, and test sets overlap or share data, it introduces a bias that inflates performance metrics and prevents accurate assessment of a model's true ability to generalize to new examples. This paper presents an innovative disjoint sampling approach for training SOTA models on Hyperspectral image classification (HSIC) tasks. By separating training, validation, and test data without overlap, the proposed method facilitates a fairer evaluation of how well a model can classify pixels it was not exposed to during training or validation. Experiments demonstrate the approach significantly improves a model's generalization compared to alternatives that include training and validation data in test data. By eliminating data leakage between sets, disjoint sampling provides reliable metrics for benchmarking progress in HSIC. Researchers can have confidence that reported performance truly reflects a model's capabilities for classifying new scenes, not just memorized pixels. This rigorous methodology is critical for advancing SOTA models and their real-world application to large-scale land mapping with Hyperspectral sensors. The source code is available at https://github.com/mahmad00/Disjoint-Sampling-for-Hyperspectral-Image-Classification.
Abstract:Hyperspectral image classification is a challenging task due to the high dimensionality and complex nature of hyperspectral data. In recent years, deep learning techniques have emerged as powerful tools for addressing these challenges. This survey provides a comprehensive overview of the current trends and future prospects in hyperspectral image classification, focusing on the advancements from deep learning models to the emerging use of transformers. We review the key concepts, methodologies, and state-of-the-art approaches in deep learning for hyperspectral image classification. Additionally, we discuss the potential of transformer-based models in this field and highlight the advantages and challenges associated with these approaches. Comprehensive experimental results have been undertaken using three Hyperspectral datasets to verify the efficacy of various conventional deep-learning models and Transformers. Finally, we outline future research directions and potential applications that can further enhance the accuracy and efficiency of hyperspectral image classification. The Source code is available at https://github.com/mahmad00/Conventional-to-Transformer-for-Hyperspectral-Image-Classification-Survey-2024.
Abstract:The traditional Transformer model encounters challenges with variable-length input sequences, particularly in Hyperspectral Image Classification (HSIC), leading to efficiency and scalability concerns. To overcome this, we propose a pyramid-based hierarchical transformer (PyFormer). This innovative approach organizes input data hierarchically into segments, each representing distinct abstraction levels, thereby enhancing processing efficiency for lengthy sequences. At each level, a dedicated transformer module is applied, effectively capturing both local and global context. Spatial and spectral information flow within the hierarchy facilitates communication and abstraction propagation. Integration of outputs from different levels culminates in the final input representation. Experimental results underscore the superiority of the proposed method over traditional approaches. Additionally, the incorporation of disjoint samples augments robustness and reliability, thereby highlighting the potential of our approach in advancing HSIC. The source code is available at https://github.com/mahmad00/PyFormer.