Abstract:In recent years, the rise of AI-assisted code-generation tools has significantly transformed software development. While code generators have mainly been used to support conventional software development, their use will be extended to powerful and secure AI systems. Systems capable of generating code, such as ChatGPT, OpenAI Codex, GitHub Copilot, and AlphaCode, take advantage of advances in machine learning (ML) and natural language processing (NLP) enabled by large language models (LLMs). However, it must be borne in mind that these models work probabilistically, which means that although they can generate complex code from natural language input, there is no guarantee for the functionality and security of the generated code. However, to fully exploit the considerable potential of this technology, the security, reliability, functionality, and quality of the generated code must be guaranteed. This paper examines the implementation of these goals to date and explores strategies to optimize them. In addition, we explore how these systems can be optimized to create safe, high-performance, and executable artificial intelligence (AI) models, and consider how to improve their accessibility to make AI development more inclusive and equitable.
Abstract:The advancement of AI technologies has greatly increased the complexity of AI pipelines as they include many stages such as data collection, pre-processing, training, evaluation and visualisation. To provide effective and accessible AI solutions, it is important to design pipelines for different user groups such as experts, professionals from different fields and laypeople. Ease of use and trust play a central role in the acceptance of AI systems. The presented system, ALPACA (Adaptive Learning Pipeline for Advanced Comprehensive AI Analysis), offers a comprehensive AI pipeline that addresses the needs of diverse user groups. ALPACA integrates visual and code-based development and facilitates all key phases of the AI pipeline. Its architecture is based on Celery (with Redis backend) for efficient task management, MongoDB for seamless data storage and Kubernetes for cloud-based scalability and resource utilisation. Future versions of ALPACA will support modern techniques such as federated and continuous learning as well as explainable AI methods to further improve security, usability and trustworthiness. The application is demonstrated by an Android app for similarity recognition, which emphasises ALPACA's potential for use in everyday life.
Abstract:Convolutional Neural Networks (CNNs) are known for their ability to learn hierarchical structures, naturally developing detectors for objects, and semantic concepts within their deeper layers. Activation maps (AMs) reveal these saliency regions, which are crucial for many Explainable AI (XAI) methods. However, the direct exploitation of raw AMs in CNNs for feature attribution remains underexplored in literature. This work revises Class Activation Map (CAM) methods by introducing the Label-free Activation Map (LaFAM), a streamlined approach utilizing raw AMs for feature attribution without reliance on labels. LaFAM presents an efficient alternative to conventional CAM methods, demonstrating particular effectiveness in saliency map generation for self-supervised learning while maintaining applicability in supervised learning scenarios.
Abstract:Object detectors in real-world applications often fail to detect objects due to varying factors such as weather conditions and noisy input. Therefore, a process that mitigates false detections is crucial for both safety and accuracy. While uncertainty-based thresholding shows promise, previous works demonstrate an imperfect correlation between uncertainty and detection errors. This hinders ideal thresholding, prompting us to further investigate the correlation and associated cost with different types of uncertainty. We therefore propose a cost-sensitive framework for object detection tailored to user-defined budgets on the two types of errors, missing and false detections. We derive minimum thresholding requirements to prevent performance degradation and define metrics to assess the applicability of uncertainty for failure recognition. Furthermore, we automate and optimize the thresholding process to maximize the failure recognition rate w.r.t. the specified budget. Evaluation on three autonomous driving datasets demonstrates that our approach significantly enhances safety, particularly in challenging scenarios. Leveraging localization aleatoric uncertainty and softmax-based entropy only, our method boosts the failure recognition rate by 36-60\% compared to conventional approaches. Code is available at https://mos-ks.github.io/publications.
Abstract:Robustly and accurately localizing objects in real-world environments can be challenging due to noisy data, hardware limitations, and the inherent randomness of physical systems. To account for these factors, existing works estimate the aleatoric uncertainty of object detectors by modeling their localization output as a Gaussian distribution $\mathcal{N}(\mu,\,\sigma^{2})\,$, and training with loss attenuation. We identify three aspects that are unaddressed in the state of the art, but warrant further exploration: (1) the efficient and mathematically sound propagation of $\mathcal{N}(\mu,\,\sigma^{2})\,$ through non-linear post-processing, (2) the calibration of the predicted uncertainty, and (3) its interpretation. We overcome these limitations by: (1) implementing loss attenuation in EfficientDet, and proposing two deterministic methods for the exact and fast propagation of the output distribution, (2) demonstrating on the KITTI and BDD100K datasets that the predicted uncertainty is miscalibrated, and adapting two calibration methods to the localization task, and (3) investigating the correlation between aleatoric uncertainty and task-relevant error sources. Our contributions are: (1) up to five times faster propagation while increasing localization performance by up to 1\%, (2) up to fifteen times smaller expected calibration error, and (3) the predicted uncertainty is found to correlate with occlusion, object distance, detection accuracy, and image quality.
Abstract:In this paper, we propose and analyse a family of generalised stochastic composite mirror descent algorithms. With adaptive step sizes, the proposed algorithms converge without requiring prior knowledge of the problem. Combined with an entropy-like update-generating function, these algorithms perform gradient descent in the space equipped with the maximum norm, which allows us to exploit the low-dimensional structure of the decision sets for high-dimensional problems. Together with a sampling method based on the Rademacher distribution and variance reduction techniques, the proposed algorithms guarantee a logarithmic complexity dependence on dimensionality for zeroth-order optimisation problems.
Abstract:In this paper, we propose and analyze algorithms for zeroth-order optimization of non-convex composite objectives, focusing on reducing the complexity dependence on dimensionality. This is achieved by exploiting the low dimensional structure of the decision set using the stochastic mirror descent method with an entropy alike function, which performs gradient descent in the space equipped with the maximum norm. To improve the gradient estimation, we replace the classic Gaussian smoothing method with a sampling method based on the Rademacher distribution and show that the mini-batch method copes with the non-Euclidean geometry. To avoid tuning hyperparameters, we analyze the adaptive stepsizes for the general stochastic mirror descent and show that the adaptive version of the proposed algorithm converges without requiring prior knowledge about the problem.
Abstract:This paper proposes a new family of algorithms for the online optimisation of composite objectives. The algorithms can be interpreted as the combination of the exponentiated gradient and $p$-norm algorithm. Combined with algorithmic ideas of adaptivity and optimism, the proposed algorithms achieve a sequence-dependent regret upper bound, matching the best-known bounds for sparse target decision variables. Furthermore, the algorithms have efficient implementations for popular composite objectives and constraints and can be converted to stochastic optimisation algorithms with the optimal accelerated rate for smooth objectives.
Abstract:A limitation for collaborative robots (cobots) is their lack of ability to adapt to human partners, who typically exhibit an immense diversity of behaviors. We present an autonomous framework as a cobot's real-time decision-making mechanism to anticipate a variety of human characteristics and behaviors, including human errors, toward a personalized collaboration. Our framework handles such behaviors in two levels: 1) short-term human behaviors are adapted through our novel Anticipatory Partially Observable Markov Decision Process (A-POMDP) models, covering a human's changing intent (motivation), availability, and capability; 2) long-term changing human characteristics are adapted by our novel Adaptive Bayesian Policy Selection (ABPS) mechanism that selects a short-term decision model, e.g., an A-POMDP, according to an estimate of a human's workplace characteristics, such as her expertise and collaboration preferences. To design and evaluate our framework over a diversity of human behaviors, we propose a pipeline where we first train and rigorously test the framework in simulation over novel human models. Then, we deploy and evaluate it on our novel physical experiment setup that induces cognitive load on humans to observe their dynamic behaviors, including their mistakes, and their changing characteristics such as their expertise. We conduct user studies and show that our framework effectively collaborates non-stop for hours and adapts to various changing human behaviors and characteristics in real-time. That increases the efficiency and naturalness of the collaboration with a higher perceived collaboration, positive teammate traits, and human trust. We believe that such an extended human adaptation is key to the long-term use of cobots.
Abstract:The deepening penetration of variable energy resources creates unprecedented challenges for system operators (SOs). An issue that merits special attention is the precipitous net load ramps, which require SOs to have flexible capacity at their disposal so as to maintain the supply-demand balance at all times. In the judicious procurement and deployment of flexible capacity, a tool that forecasts net load ramps may be of great assistance to SOs. To this end, we propose a methodology to forecast the magnitude and start time of daily primary three-hour net load ramps. We perform an extensive analysis so as to identify the factors that influence net load and draw on the identified factors to develop a forecasting methodology that harnesses the long short-term memory model. We demonstrate the effectiveness of the proposed methodology on the CAISO system using comparative assessments with selected benchmarks based on various evaluation metrics.