Abstract:Natural distribution shift causes a deterioration in the perception performance of convolutional neural networks (CNNs). This comprehensive analysis for real-world traffic data addresses: 1) investigating the effect of natural distribution shift and weather augmentations on both detection quality and confidence estimation, 2) evaluating model performance for both classification and object localization, and 3) benchmarking two common uncertainty quantification methods - Ensembles and different variants of Monte-Carlo (MC) Dropout - under natural and close-to-natural distribution shift. For this purpose, a novel dataset has been curated from publicly available autonomous driving datasets. The in-distribution (ID) data is based on cutouts of a single object, for which both class and bounding box annotations are available. The six distribution-shift datasets cover adverse weather scenarios, simulated rain and fog, corner cases, and out-of-distribution data. A granular analysis of CNNs under distribution shift allows to quantize the impact of different types of shifts on both, task performance and confidence estimation: ConvNeXt-Tiny is more robust than EfficientNet-B0; heavy rain degrades classification stronger than localization, contrary to heavy fog; integrating MC-Dropout into selected layers only has the potential to enhance task performance and confidence estimation, whereby the identification of these layers depends on the type of distribution shift and the considered task.
Abstract:Object detectors in real-world applications often fail to detect objects due to varying factors such as weather conditions and noisy input. Therefore, a process that mitigates false detections is crucial for both safety and accuracy. While uncertainty-based thresholding shows promise, previous works demonstrate an imperfect correlation between uncertainty and detection errors. This hinders ideal thresholding, prompting us to further investigate the correlation and associated cost with different types of uncertainty. We therefore propose a cost-sensitive framework for object detection tailored to user-defined budgets on the two types of errors, missing and false detections. We derive minimum thresholding requirements to prevent performance degradation and define metrics to assess the applicability of uncertainty for failure recognition. Furthermore, we automate and optimize the thresholding process to maximize the failure recognition rate w.r.t. the specified budget. Evaluation on three autonomous driving datasets demonstrates that our approach significantly enhances safety, particularly in challenging scenarios. Leveraging localization aleatoric uncertainty and softmax-based entropy only, our method boosts the failure recognition rate by 36-60\% compared to conventional approaches. Code is available at https://mos-ks.github.io/publications.
Abstract:Robustly and accurately localizing objects in real-world environments can be challenging due to noisy data, hardware limitations, and the inherent randomness of physical systems. To account for these factors, existing works estimate the aleatoric uncertainty of object detectors by modeling their localization output as a Gaussian distribution $\mathcal{N}(\mu,\,\sigma^{2})\,$, and training with loss attenuation. We identify three aspects that are unaddressed in the state of the art, but warrant further exploration: (1) the efficient and mathematically sound propagation of $\mathcal{N}(\mu,\,\sigma^{2})\,$ through non-linear post-processing, (2) the calibration of the predicted uncertainty, and (3) its interpretation. We overcome these limitations by: (1) implementing loss attenuation in EfficientDet, and proposing two deterministic methods for the exact and fast propagation of the output distribution, (2) demonstrating on the KITTI and BDD100K datasets that the predicted uncertainty is miscalibrated, and adapting two calibration methods to the localization task, and (3) investigating the correlation between aleatoric uncertainty and task-relevant error sources. Our contributions are: (1) up to five times faster propagation while increasing localization performance by up to 1\%, (2) up to fifteen times smaller expected calibration error, and (3) the predicted uncertainty is found to correlate with occlusion, object distance, detection accuracy, and image quality.