Abstract:In this paper, we propose and analyse a family of generalised stochastic composite mirror descent algorithms. With adaptive step sizes, the proposed algorithms converge without requiring prior knowledge of the problem. Combined with an entropy-like update-generating function, these algorithms perform gradient descent in the space equipped with the maximum norm, which allows us to exploit the low-dimensional structure of the decision sets for high-dimensional problems. Together with a sampling method based on the Rademacher distribution and variance reduction techniques, the proposed algorithms guarantee a logarithmic complexity dependence on dimensionality for zeroth-order optimisation problems.
Abstract:This paper proposes a new family of algorithms for the online optimisation of composite objectives. The algorithms can be interpreted as the combination of the exponentiated gradient and $p$-norm algorithm. Combined with algorithmic ideas of adaptivity and optimism, the proposed algorithms achieve a sequence-dependent regret upper bound, matching the best-known bounds for sparse target decision variables. Furthermore, the algorithms have efficient implementations for popular composite objectives and constraints and can be converted to stochastic optimisation algorithms with the optimal accelerated rate for smooth objectives.
Abstract:A limitation for collaborative robots (cobots) is their lack of ability to adapt to human partners, who typically exhibit an immense diversity of behaviors. We present an autonomous framework as a cobot's real-time decision-making mechanism to anticipate a variety of human characteristics and behaviors, including human errors, toward a personalized collaboration. Our framework handles such behaviors in two levels: 1) short-term human behaviors are adapted through our novel Anticipatory Partially Observable Markov Decision Process (A-POMDP) models, covering a human's changing intent (motivation), availability, and capability; 2) long-term changing human characteristics are adapted by our novel Adaptive Bayesian Policy Selection (ABPS) mechanism that selects a short-term decision model, e.g., an A-POMDP, according to an estimate of a human's workplace characteristics, such as her expertise and collaboration preferences. To design and evaluate our framework over a diversity of human behaviors, we propose a pipeline where we first train and rigorously test the framework in simulation over novel human models. Then, we deploy and evaluate it on our novel physical experiment setup that induces cognitive load on humans to observe their dynamic behaviors, including their mistakes, and their changing characteristics such as their expertise. We conduct user studies and show that our framework effectively collaborates non-stop for hours and adapts to various changing human behaviors and characteristics in real-time. That increases the efficiency and naturalness of the collaboration with a higher perceived collaboration, positive teammate traits, and human trust. We believe that such an extended human adaptation is key to the long-term use of cobots.
Abstract:The deepening penetration of variable energy resources creates unprecedented challenges for system operators (SOs). An issue that merits special attention is the precipitous net load ramps, which require SOs to have flexible capacity at their disposal so as to maintain the supply-demand balance at all times. In the judicious procurement and deployment of flexible capacity, a tool that forecasts net load ramps may be of great assistance to SOs. To this end, we propose a methodology to forecast the magnitude and start time of daily primary three-hour net load ramps. We perform an extensive analysis so as to identify the factors that influence net load and draw on the identified factors to develop a forecasting methodology that harnesses the long short-term memory model. We demonstrate the effectiveness of the proposed methodology on the CAISO system using comparative assessments with selected benchmarks based on various evaluation metrics.
Abstract:Motivated by the problem of tuning hyperparameters in machine learning, we present a new approach for gradually and adaptively optimizing an unknown function using estimated gradients. We validate the empirical performance of the proposed idea on both low and high dimensional problems. The experimental results demonstrate the advantages of our approach for tuning high dimensional hyperparameters in machine learning.