Abstract:An efficient channel estimation is of vital importance to help THz communication systems achieve their full potential. Conventional uplink channel estimation methods, such as least square estimation, are practically inefficient for THz systems because of their large computation overhead. In this paper, we propose an efficient convolutional neural network (CNN) based THz channel estimator that estimates the THz channel factors using uplink sub-6GHz channel. Further, we use the estimated THz channel factors to predict the optimal beamformer from a pre-given codebook, using a dense neural network. We not only get rid of the overhead associated with the conventional methods, but also achieve near-optimal spectral efficiency rates using the proposed beamformer predictor. The proposed method also outperforms deep learning based beamformer predictors accepting THz channel matrices as input, thus proving the validity and efficiency of our sub-6GHz based approach.
Abstract:The ever-evolving landscape of distributed wireless systems, e.g. multi-user AR/VR systems, demands high data rates (up to 500 Mbps per user) and low power consumption. With increasing number of participating users, uplink data transmission in the situation where the number of transmitter user antennas exceeds the number of access point (AP) antennas presents a low-rank channel problem. Current Wi-Fi standards using orthogonal multiple access (OMA) fail to address these requirements. Non-orthogonal multiple access (NOMA)-based systems, while outperforming the OMA methods, still fall short of the requirement in low-rank channel uplink transmission, because they adhere to a single decoding order for successive interference cancelation (SIC). This paper proposes and develops a novel optimal power-subcarrier allocation algorithm to maximize the achieved data rates for this low rank channel scenario. Additionally, the proposed algorithm implements a novel time-sharing algorithm for simultaneously participating users, which adaptively varies the decoding orders to achieve higher data rates than any single decoding order. Extensive experimental validations demonstrate that the proposed algorithm achieves 39%, 28%, and 16% higher sum data rates than OMA, NOMA, and multi-carrier NOMA baselines respectively, under low-rank channel conditions, under varying SNR values. We further show that the proposed algorithm significantly outperforms the baselines with varying numbers of users or AP antennas, showing the effectiveness of the optimal power allocation and time-sharing.
Abstract:This paper introduces a novel power allocation and subcarrier optimization algorithm tailored for fixed wireless access (FWA) networks operating under low-rank channel conditions, where the number of subscriber antennas far exceeds those at the base station (BS). As FWA networks grow to support more users, traditional approaches like orthogonal multiple access (OMA) and non-orthogonal multiple access (NOMA) struggle to maintain high data rates and energy efficiency due to the limited degrees of freedom in low-rank scenarios. Our proposed solution addresses this by combining optimal power-subcarrier allocation with an adaptive time-sharing algorithm that dynamically adjusts decoding orders to optimize performance across multiple users. The algorithm leverages a generalized decision feedback equalizer (GDFE) approach to effectively manage inter-symbol interference and crosstalk, leading to superior data rates and energy savings. Simulation results demonstrate that our approach significantly outperforms existing OMA and NOMA baselines, particularly in low-rank conditions, with substantial gains in both data rate and energy efficiency. The findings highlight the potential of this method to meet the growing demand for scalable, high-performance FWA networks.
Abstract:We characterize the geometry and topology of the set of all weight vectors for which a linear neural network computes the same linear transformation $W$. This set of weight vectors is called the fiber of $W$ (under the matrix multiplication map), and it is embedded in the Euclidean weight space of all possible weight vectors. The fiber is an algebraic variety that is not necessarily a manifold. We describe a natural way to stratify the fiber--that is, to partition the algebraic variety into a finite set of manifolds of varying dimensions called strata. We call this set of strata the rank stratification. We derive the dimensions of these strata and the relationships by which they adjoin each other. Although the strata are disjoint, their closures are not. Our strata satisfy the frontier condition: if a stratum intersects the closure of another stratum, then the former stratum is a subset of the closure of the latter stratum. Each stratum is a manifold of class $C^\infty$ embedded in weight space, so it has a well-defined tangent space and normal space at every point (weight vector). We show how to determine the subspaces tangent to and normal to a specified stratum at a specified point on the stratum, and we construct elegant bases for those subspaces. To help achieve these goals, we first derive what we call a Fundamental Theorem of Linear Neural Networks, analogous to what Strang calls the Fundamental Theorem of Linear Algebra. We show how to decompose each layer of a linear neural network into a set of subspaces that show how information flows through the neural network. Each stratum of the fiber represents a different pattern by which information flows (or fails to flow) through the neural network. The topology of a stratum depends solely on this decomposition. So does its geometry, up to a linear transformation in weight space.
Abstract:Ultra-wideband (UWB) is emerging as a promising solution that can realize proximity services, such as UWB tagless gate (UTG), thanks to centimeter-level localization accuracy based on two different ranging methods such as downlink time-difference of arrival (DL-TDoA) and double-sided two-way ranging (DS-TWR). The UTG is a UWB-based proximity service that provides a seamless gate pass system without requiring real-time mobile device (MD) tapping. The location of MD is calculated using DL-TDoA, and the MD communicates with the nearest UTG using DS-TWR to open the gate. Therefore, the knowledge about the exact location of MD is the main challenge of UTG, and hence we provide the solutions for both DL-TDoA and DS-TWR. In this paper, we propose dynamic anchor selection for extremely accurate DL-TDoA localization and pose prediction for DS-TWR, called DynaPose. The pose is defined as the actual location of MD on the human body, which affects the localization accuracy. DynaPose is based on line-of-sight (LOS) and non-LOS (NLOS) classification using deep learning for anchor selection and pose prediction. Deep learning models use the UWB channel impulse response and the inertial measurement unit embedded in the smartphone. DynaPose is implemented on Samsung Galaxy Note20 Ultra and Qorvo UWB board to show the feasibility and applicability. DynaPose achieves a LOS/NLOS classification accuracy of 0.984, 62% higher DL-TDoA localization accuracy, and ultimately detects four different poses with an accuracy of 0.961 in real-time.
Abstract:Among the various Ultra-wideband (UWB) ranging methods, the absence of uplink communication or centralized computation makes downlink time-difference-of-arrival (DL-TDOA) localization the most suitable for large-scale industrial deployments. However, temporary or permanent obstacles in the deployment region often lead to non-line-of-sight (NLOS) channel path and signal outage effects, which result in localization errors. Prior research has addressed this problem by increasing the ranging frequency, which leads to a heavy increase in the user device power consumption. It also does not contribute to any increase in localization accuracy under line-of-sight (LOS) conditions. In this paper, we propose and implement a novel low-power channel-aware dynamic frequency DL-TDOA ranging algorithm. It comprises NLOS probability predictor based on a convolutional neural network (CNN), a dynamic ranging frequency control module, and an IMU sensor-based ranging filter. Based on the conducted experiments, we show that the proposed algorithm achieves 50% higher accuracy in NLOS conditions while having 46% lower power consumption in LOS conditions compared to baseline methods from prior research.
Abstract:As commercial interest in proximity services increased, the development of various wireless localization techniques was promoted. In line with this trend, Ultra-wideband (UWB) is emerging as a promising solution that can realize proximity services thanks to centimeter-level localization accuracy. In addition, since the actual location of the mobile device (MD) on the human body, called pose, affects the localization accuracy, poses are also important to provide accurate proximity services, especially for the UWB tagless gate (UTG). In this paper, a real-time pose detector, termed D3, is proposed to estimate the pose of MD when users pass through UTG. D3 is based on line-of-sight (LOS) and non-LOS (NLOS) classification using UWB channel impulse response and utilizes the inertial measurement unit embedded in the smartphone to estimate the pose. D3 is implemented on Samsung Galaxy Note20 Ultra (i.e., SMN986B) and Qorvo UWB board to show the feasibility and applicability. D3 achieved an LOS/NLOS classification accuracy of 0.984, and ultimately detected four different poses of MD with an accuracy of 0.961 in real-time.