Abstract:Upcoming Augmented Reality (AR) and Virtual Reality (VR) systems require high data rates ($\geq$ 500 Mbps) and low power consumption for seamless experience. With an increasing number of subscribing users, the total number of antennas across all transmitting users far exceeds the number of antennas at the access point (AP). This results in a low rank wireless channel, presenting a bottleneck for uplink communication systems. The current uplink systems that use orthogonal multiple access (OMA) and the proposed non-orthogonal multiple access (NOMA), fail to achieve the required data rates / power consumption under predominantly low rank channel scenarios. This paper introduces an optimal power sub carrier allocation algorithm for multi-carrier NOMA, named minPMAC, and an associated time-sharing algorithm that adaptively changes successive interference cancellation decoding orders to maximize sum data rates in these low rank channels. This Lagrangian based optimization technique, although globally optimum, is prohibitive in terms of runtime, proving inefficient for real-time scenarios. Hence, we propose a novel near-optimal deep reinforcement learning-based energy sum optimization (DRL-minPMAC) which achieves real-time efficiency. Extensive experimental evaluations show that minPMAC achieves 28\% and 39\% higher data rates than NOMA and OMA baselines. Furthermore, the proposed DRL-minPMAC runs ~5 times faster than minPMAC and achieves 83\% of the global optimum data rates in real time
Abstract:The ever-evolving landscape of distributed wireless systems, e.g. multi-user AR/VR systems, demands high data rates (up to 500 Mbps per user) and low power consumption. With increasing number of participating users, uplink data transmission in the situation where the number of transmitter user antennas exceeds the number of access point (AP) antennas presents a low-rank channel problem. Current Wi-Fi standards using orthogonal multiple access (OMA) fail to address these requirements. Non-orthogonal multiple access (NOMA)-based systems, while outperforming the OMA methods, still fall short of the requirement in low-rank channel uplink transmission, because they adhere to a single decoding order for successive interference cancelation (SIC). This paper proposes and develops a novel optimal power-subcarrier allocation algorithm to maximize the achieved data rates for this low rank channel scenario. Additionally, the proposed algorithm implements a novel time-sharing algorithm for simultaneously participating users, which adaptively varies the decoding orders to achieve higher data rates than any single decoding order. Extensive experimental validations demonstrate that the proposed algorithm achieves 39%, 28%, and 16% higher sum data rates than OMA, NOMA, and multi-carrier NOMA baselines respectively, under low-rank channel conditions, under varying SNR values. We further show that the proposed algorithm significantly outperforms the baselines with varying numbers of users or AP antennas, showing the effectiveness of the optimal power allocation and time-sharing.