Abstract:In this paper, we increase the availability and integration of devices in the learning process to enhance the convergence of federated learning (FL) models. To address the issue of having all the data in one location, federated learning, which maintains the ability to learn over decentralized data sets, combines privacy and technology. Until the model converges, the server combines the updated weights obtained from each dataset over a number of rounds. The majority of the literature suggested client selection techniques to accelerate convergence and boost accuracy. However, none of the existing proposals have focused on the flexibility to deploy and select clients as needed, wherever and whenever that may be. Due to the extremely dynamic surroundings, some devices are actually not available to serve as clients in FL, which affects the availability of data for learning and the applicability of the existing solution for client selection. In this paper, we address the aforementioned limitations by introducing an On-Demand-FL, a client deployment approach for FL, offering more volume and heterogeneity of data in the learning process. We make use of the containerization technology such as Docker to build efficient environments using IoT and mobile devices serving as volunteers. Furthermore, Kubernetes is used for orchestration. The Genetic algorithm (GA) is used to solve the multi-objective optimization problem due to its evolutionary strategy. The performed experiments using the Mobile Data Challenge (MDC) dataset and the Localfed framework illustrate the relevance of the proposed approach and the efficiency of the on-the-fly deployment of clients whenever and wherever needed with less discarded rounds and more available data.
Abstract:Autism Spectrum Disorder (ASD) is a neuro-developmental syndrome resulting from alterations in the embryological brain before birth. This disorder distinguishes its patients by special socially restricted and repetitive behavior in addition to specific behavioral traits. Hence, this would possibly deteriorate their social behavior among other individuals, as well as their overall interaction within their community. Moreover, medical research has proved that ASD also affects the facial characteristics of its patients, making the syndrome recognizable from distinctive signs within an individual's face. Given that as a motivation behind our work, we propose a novel privacy-preserving federated learning scheme to predict ASD in a certain individual based on their behavioral and facial features, embedding a merging process of both data features through facial feature extraction while respecting patient data privacy. After training behavioral and facial image data on federated machine learning models, promising results are achieved, with 70\% accuracy for the prediction of ASD according to behavioral traits in a federated learning environment, and a 62\% accuracy is reached for the prediction of ASD given an image of the patient's face. Then, we test the behavior of regular as well as federated ML on our merged data, behavioral and facial, where a 65\% accuracy is achieved with the regular logistic regression model and 63\% accuracy with the federated learning model.
Abstract:Federated Learning (FL) is a novel distributed privacy-preserving learning paradigm, which enables the collaboration among several participants (e.g., Internet of Things devices) for the training of machine learning models. However, selecting the participants that would contribute to this collaborative training is highly challenging. Adopting a random selection strategy would entail substantial problems due to the heterogeneity in terms of data quality, and computational and communication resources across the participants. Although several approaches have been proposed in the literature to overcome the problem of random selection, most of these approaches follow a unilateral selection strategy. In fact, they base their selection strategy on only the federated server's side, while overlooking the interests of the client devices in the process. To overcome this problem, we present in this paper FedMint, an intelligent client selection approach for federated learning on IoT devices using game theory and bootstrapping mechanism. Our solution involves the design of: (1) preference functions for the client IoT devices and federated servers to allow them to rank each other according to several factors such as accuracy and price, (2) intelligent matching algorithms that take into account the preferences of both parties in their design, and (3) bootstrapping technique that capitalizes on the collaboration of multiple federated servers in order to assign initial accuracy value for the newly connected IoT devices. Based on our simulation findings, our strategy surpasses the VanillaFL selection approach in terms of maximizing both the revenues of the client devices and accuracy of the global federated learning model.
Abstract:Volunteer computing uses Internet-connected devices (laptops, PCs, smart devices, etc.), in which their owners volunteer them as storage and computing power resources, has become an essential mechanism for resource management in numerous applications. The growth of the volume and variety of data traffic in the Internet leads to concerns on the robustness of cyberphysical systems especially for critical infrastructures. Therefore, the implementation of an efficient Intrusion Detection System for gathering such sensory data has gained vital importance. In this paper, we present a comparative study of Artificial Intelligence (AI)-driven intrusion detection systems for wirelessly connected sensors that track crucial applications. Specifically, we present an in-depth analysis of the use of machine learning, deep learning and reinforcement learning solutions to recognize intrusive behavior in the collected traffic. We evaluate the proposed mechanisms by using KD'99 as real attack data-set in our simulations. Results present the performance metrics for three different IDSs namely the Adaptively Supervised and Clustered Hybrid IDS (ASCH-IDS), Restricted Boltzmann Machine-based Clustered IDS (RBC-IDS) and Q-learning based IDS (QL-IDS) to detect malicious behaviors. We also present the performance of different reinforcement learning techniques such as State-Action-Reward-State-Action Learning (SARSA) and the Temporal Difference learning (TD). Through simulations, we show that QL-IDS performs with 100% detection rate while SARSA-IDS and TD-IDS perform at the order of 99.5%.