Abstract:This paper introduced a matrix parametrization method based on the Loeffler discrete cosine transform (DCT) algorithm. As a result, a new class of eight-point DCT approximations was proposed, capable of unifying the mathematical formalism of several eight-point DCT approximations archived in the literature. Pareto-efficient DCT approximations are obtained through multicriteria optimization, where computational complexity, proximity, and coding performance are considered. Efficient approximations and their scaled 16- and 32-point versions are embedded into image and video encoders, including a JPEG-like codec and H.264/AVC and H.265/HEVC standards. Results are compared to the unmodified standard codecs. Efficient approximations are mapped and implemented on a Xilinx VLX240T FPGA and evaluated for area, speed, and power consumption.
Abstract:The usage of linear transformations has great relevance for data decorrelation applications, like image and video compression. In that sense, the discrete Tchebichef transform (DTT) possesses useful coding and decorrelation properties. The DTT transform kernel does not depend on the input data and fast algorithms can be developed to real time applications. However, the DTT fast algorithm presented in literature possess high computational complexity. In this work, we introduce a new low-complexity approximation for the DTT. The fast algorithm of the proposed transform is multiplication-free and requires a reduced number of additions and bit-shifting operations. Image and video compression simulations in popular standards shows good performance of the proposed transform. Regarding hardware resource consumption for FPGA shows 43.1% reduction of configurable logic blocks and ASIC place and route realization shows 57.7% reduction in the area-time figure when compared with the 2-D version of the exact DTT.
Abstract:A multiplierless pruned approximate 8-point discrete cosine transform (DCT) requiring only 10 additions is introduced. The proposed algorithm was assessed in image and video compression, showing competitive performance with state-of-the-art methods. Digital implementation in 45 nm CMOS technology up to place-and-route level indicates clock speed of 288 MHz at a 1.1 V supply. The 8x8 block rate is 36 MHz.The DCT approximation was embedded into HEVC reference software; resulting video frames, at up to 327 Hz for 8-bit RGB HEVC, presented negligible image degradation.
Abstract:In this paper, we introduce a low-complexity approximation for the discrete Tchebichef transform (DTT). The proposed forward and inverse transforms are multiplication-free and require a reduced number of additions and bit-shifting operations. Numerical compression simulations demonstrate the efficiency of the proposed transform for image and video coding. Furthermore, Xilinx Virtex-6 FPGA based hardware realization shows 44.9% reduction in dynamic power consumption and 64.7% lower area when compared to the literature.
Abstract:Video processing systems such as HEVC requiring low energy consumption needed for the multimedia market has lead to extensive development in fast algorithms for the efficient approximation of 2-D DCT transforms. The DCT is employed in a multitude of compression standards due to its remarkable energy compaction properties. Multiplier-free approximate DCT transforms have been proposed that offer superior compression performance at very low circuit complexity. Such approximations can be realized in digital VLSI hardware using additions and subtractions only, leading to significant reductions in chip area and power consumption compared to conventional DCTs and integer transforms. In this paper, we introduce a novel 8-point DCT approximation that requires only 14 addition operations and no multiplications. The proposed transform possesses low computational complexity and is compared to state-of-the-art DCT approximations in terms of both algorithm complexity and peak signal-to-noise ratio. The proposed DCT approximation is a candidate for reconfigurable video standards such as HEVC. The proposed transform and several other DCT approximations are mapped to systolic-array digital architectures and physically realized as digital prototype circuits using FPGA technology and mapped to 45 nm CMOS technology.