Abstract:This paper introduced a matrix parametrization method based on the Loeffler discrete cosine transform (DCT) algorithm. As a result, a new class of eight-point DCT approximations was proposed, capable of unifying the mathematical formalism of several eight-point DCT approximations archived in the literature. Pareto-efficient DCT approximations are obtained through multicriteria optimization, where computational complexity, proximity, and coding performance are considered. Efficient approximations and their scaled 16- and 32-point versions are embedded into image and video encoders, including a JPEG-like codec and H.264/AVC and H.265/HEVC standards. Results are compared to the unmodified standard codecs. Efficient approximations are mapped and implemented on a Xilinx VLX240T FPGA and evaluated for area, speed, and power consumption.
Abstract:An orthogonal 16-point approximate discrete cosine transform (DCT) is introduced. The proposed transform requires neither multiplications nor bit-shifting operations. A fast algorithm based on matrix factorization is introduced, requiring only 44 additions---the lowest arithmetic cost in literature. To assess the introduced transform, computational complexity, similarity with the exact DCT, and coding performance measures are computed. Classical and state-of-the-art 16-point low-complexity transforms were used in a comparative analysis. In the context of image compression, the proposed approximation was evaluated via PSNR and SSIM measurements, attaining the best cost-benefit ratio among the competitors. For video encoding, the proposed approximation was embedded into a HEVC reference software for direct comparison with the original HEVC standard. Physically realized and tested using FPGA hardware, the proposed transform showed 35% and 37% improvements of area-time and area-time-squared VLSI metrics when compared to the best competing transform in the literature.