Abstract:Wearable inertial motion capture (MoCap) provides a portable, occlusion-free, and privacy-preserving alternative to camera-based systems, but its accuracy depends on tightly attached sensors - an intrusive and uncomfortable requirement for daily use. Embedding IMUs into loose-fitting garments is a desirable alternative, yet sensor-body displacement introduces severe, structured, and location-dependent corruption that breaks standard inertial pipelines. We propose GID (Garment Inertial Denoiser), a lightweight, plug-and-play Transformer that factorizes loose-wear MoCap into three stages: (i) location-specific denoising, (ii) adaptive cross-wear fusion, and (iii) general pose prediction. GID uses a location-aware expert architecture, where a shared spatio-temporal backbone models global motion while per-IMU expert heads specialize in local garment dynamics, and a lightweight fusion module ensures cross-part consistency. This inductive bias enables stable training and effective learning from limited paired loose-tight IMU data. We also introduce GarMoCap, a combined public and newly collected dataset covering diverse users, motions, and garments. Experiments show that GID enables accurate, real-time denoising from single-user training and generalizes across unseen users, motions, and garment types, consistently improving state-of-the-art inertial MoCap methods when used as a drop-in module.
Abstract:In recent years, advances in neuroscience and artificial intelligence have paved the way for unprecedented opportunities for understanding the complexity of the brain and its emulation by computational systems. Cutting-edge advancements in neuroscience research have revealed the intricate relationship between brain structure and function, while the success of artificial neural networks highlights the importance of network architecture. Now is the time to bring them together to better unravel how intelligence emerges from the brain's multiscale repositories. In this review, we propose the Digital Twin Brain (DTB) as a transformative platform that bridges the gap between biological and artificial intelligence. It consists of three core elements: the brain structure that is fundamental to the twinning process, bottom-layer models to generate brain functions, and its wide spectrum of applications. Crucially, brain atlases provide a vital constraint, preserving the brain's network organization within the DTB. Furthermore, we highlight open questions that invite joint efforts from interdisciplinary fields and emphasize the far-reaching implications of the DTB. The DTB can offer unprecedented insights into the emergence of intelligence and neurological disorders, which holds tremendous promise for advancing our understanding of both biological and artificial intelligence, and ultimately propelling the development of artificial general intelligence and facilitating precision mental healthcare.