Abstract:Spatial pooling (SP) and cross-channel pooling (CCP) operators have been applied to aggregate spatial features and pixel-wise features from feature maps in deep neural networks (DNNs), respectively. Their main goal is to reduce computation and memory overhead without visibly weakening the performance of DNNs. However, SP often faces the problem of losing the subtle feature representations, while CCP has a high possibility of ignoring salient feature representations, which may lead to both miscalibration of confidence issues and suboptimal medical classification results. To address these problems, we propose a novel dual-view framework, the first to systematically investigate the relative roles of SP and CCP by analyzing the difference between spatial features and pixel-wise features. Based on this framework, we propose a new pooling method, termed dual-view pyramid pooling (DVPP), to aggregate multi-scale dual-view features. DVPP aims to boost both medical image classification and confidence calibration performance by fully leveraging the merits of SP and CCP operators from a dual-axis perspective. Additionally, we discuss how to fulfill DVPP with five parameter-free implementations. Extensive experiments on six 2D/3D medical image classification tasks show that our DVPP surpasses state-of-the-art pooling methods in terms of medical image classification results and confidence calibration across different DNNs.
Abstract:Background: Accurate short-term readmission prediction of ICU patients is significant in improving the efficiency of resource assignment by assisting physicians in making discharge decisions. Clinically, both individual static static and multivariate temporal data collected from ICU monitors play critical roles in short-term readmission prediction. Informative static and multivariate temporal feature representation capturing and fusion present challenges for accurate readmission prediction. Methods:We propose a novel static and multivariate-temporal attentive fusion transformer (SMTAFormer) to predict short-term readmission of ICU patients by fully leveraging the potential of demographic and dynamic temporal data. In SMTAFormer, we first apply an MLP network and a temporal transformer network to learn useful static and temporal feature representations, respectively. Then, the well-designed static and multivariate temporal feature fusion module is applied to fuse static and temporal feature representations by modeling intra-correlation among multivariate temporal features and constructing inter-correlation between static and multivariate temporal features. Results: We construct a readmission risk assessment (RRA) dataset based on the MIMIC-III dataset. The extensive experiments show that SMTAFormer outperforms advanced methods, in which the accuracy of our proposed method is up to 86.6%, and the area under the receiver operating characteristic curve (AUC) is up to 0.717. Conclusion: Our proposed SMTAFormer can efficiently capture and fuse static and multivariate temporal feature representations. The results show that SMTAFormer significantly improves the short-term readmission prediction performance of ICU patients through comparisons to strong baselines.