Abstract:In recent years, the diagnosis of gastrointestinal (GI) diseases has advanced greatly with the advent of high-tech video capsule endoscopy (VCE) technology, which allows for non-invasive observation of the digestive system. The MisaHub Capsule Vision Challenge encourages the development of vendor-independent artificial intelligence models that can autonomously classify GI anomalies from VCE images. This paper presents CNN architecture designed specifically for multiclass classification of ten gut pathologies, including angioectasia, bleeding, erosion, erythema, foreign bodies, lymphangiectasia, polyps, ulcers, and worms as well as their normal state.
Abstract:We introduce an emerging AI-based approach and prototype system for assisting team formation when researchers respond to calls for proposals from funding agencies. This is an instance of the general problem of building teams when demand opportunities come periodically and potential members may vary over time. The novelties of our approach are that we: (a) extract technical skills needed about researchers and calls from multiple data sources and normalize them using Natural Language Processing (NLP) techniques, (b) build a prototype solution based on matching and teaming based on constraints, (c) describe initial feedback about system from researchers at a University to deploy, and (d) create and publish a dataset that others can use.
Abstract:Self Organizing Migrating Algorithm (SOMA) is a meta-heuristic algorithm based on the self-organizing behavior of individuals in a simulated social environment. SOMA performs iterative computations on a population of potential solutions in the given search space to obtain an optimal solution. In this paper, an Opportunistic Self Organizing Migrating Algorithm (OSOMA) has been proposed that introduces a novel strategy to generate perturbations effectively. This strategy allows the individual to span across more possible solutions and thus, is able to produce better solutions. A comprehensive analysis of OSOMA on multi-dimensional unconstrained benchmark test functions is performed. OSOMA is then applied to solve real-time Dynamic Traveling Salesman Problem (DTSP). The problem of real-time DTSP has been stipulated and simulated using real-time data from Google Maps with a varying cost-metric between any two cities. Although DTSP is a very common and intuitive model in the real world, its presence in literature is still very limited. OSOMA performs exceptionally well on the problems mentioned above. To substantiate this claim, the performance of OSOMA is compared with SOMA, Differential Evolution and Particle Swarm Optimization.