Abstract:This short paper presents an efficient path following solution for ground vehicles tailored to game AI. Our focus is on adapting established techniques to design simple solutions with parameters that are easily tunable for an efficient benchmark path follower. Our solution pays particular attention to computing a target speed which uses quadratic Bezier curves to estimate the path curvature. The performance of the proposed path follower is evaluated through a variety of test scenarios in a first-person shooter game, demonstrating its effectiveness and robustness in handling different types of paths and vehicles. We achieved a 70% decrease in the total number of stuck events compared to an existing path following solution.
Abstract:Vessel transit in ice-covered waters poses unique challenges in safe and efficient motion planning. When the concentration of ice is high, it may not be possible to find collision-free trajectories. Instead, ice can be pushed out of the way if it is small or if contact occurs near the edge of the ice. In this work, we propose a real-time navigation framework that minimizes collisions with ice and distance travelled by the vessel. We exploit a lattice-based planner with a cost that captures the ship interaction with ice. To address the dynamic nature of the environment, we plan motion in a receding horizon manner based on updated vessel and ice state information. Further, we present a novel planning heuristic for evaluating the cost-to-go, which is applicable to navigation in a channel without a fixed goal location. The performance of our planner is evaluated across several levels of ice concentration both in simulated and in real-world experiments.