Abstract:We study informative path planning (IPP) with travel budgets in cluttered environments, where an agent collects measurements of a latent field modeled as a Gaussian process (GP) to reduce uncertainty at target locations. Graph-based solvers provide global guarantees but assume pre-selected measurement locations, while continuous trajectory optimization supports path-based sensing but is computationally intensive and sensitive to initialization in obstacle-dense settings. We propose a hierarchical framework with three stages: (i) graph-based global planning, (ii) segment-wise budget allocation using geometric and kernel bounds, and (iii) spline-based refinement of each segment with hard constraints and obstacle pruning. By combining global guidance with local refinement, our method achieves lower posterior uncertainty than graph-only and continuous baselines, while running faster than continuous-space solvers (up to 9x faster than gradient-based methods and 20x faster than black-box optimizers) across synthetic cluttered environments and Arctic datasets.




Abstract:Ice conditions often require ships to reduce speed and deviate from their main course to avoid damage to the ship. In addition, broken ice fields are becoming the dominant ice conditions encountered in the Arctic, where the effects of collisions with ice are highly dependent on where contact occurs and on the particular features of the ice floes. In this paper, we present AUTO-IceNav, a framework for the autonomous navigation of ships operating in ice floe fields. Trajectories are computed in a receding-horizon manner, where we frequently replan given updated ice field data. During a planning step, we assume a nominal speed that is safe with respect to the current ice conditions, and compute a reference path. We formulate a novel cost function that minimizes the kinetic energy loss of the ship from ship-ice collisions and incorporate this cost as part of our lattice-based path planner. The solution computed by the lattice planning stage is then used as an initial guess in our proposed optimization-based improvement step, producing a locally optimal path. Extensive experiments were conducted both in simulation and in a physical testbed to validate our approach.
Abstract:Vessel transit in ice-covered waters poses unique challenges in safe and efficient motion planning. When the concentration of ice is high, it may not be possible to find collision-free trajectories. Instead, ice can be pushed out of the way if it is small or if contact occurs near the edge of the ice. In this work, we propose a real-time navigation framework that minimizes collisions with ice and distance travelled by the vessel. We exploit a lattice-based planner with a cost that captures the ship interaction with ice. To address the dynamic nature of the environment, we plan motion in a receding horizon manner based on updated vessel and ice state information. Further, we present a novel planning heuristic for evaluating the cost-to-go, which is applicable to navigation in a channel without a fixed goal location. The performance of our planner is evaluated across several levels of ice concentration both in simulated and in real-world experiments.