Abstract:Multimodal large language models (MLLMs) have significantly advanced tasks like caption generation and visual question answering by integrating visual and textual data. However, they sometimes produce misleading or hallucinate content due to discrepancies between their pre-training data and real user prompts. Existing approaches using Direct Preference Optimization (DPO) in vision-language tasks often rely on strong models like GPT-4 or CLIP to determine positive and negative responses. Here, we propose a new framework in generating synthetic data using a reward model as a proxy of human preference for effective multimodal alignment with DPO training. The resulting DPO dataset ranges from 2K to 9K image-text pairs, was evaluated on LLaVA-v1.5-7B, where our approach demonstrated substantial improvements in both the trustworthiness and reasoning capabilities of the base model across multiple hallucination and vision-language benchmark. The experiment results indicate that integrating selected synthetic data, such as from generative and rewards models can effectively reduce reliance on human-annotated data while enhancing MLLMs' alignment capability, offering a scalable solution for safer deployment.
Abstract:Transformer-based object detectors (DETR) have shown significant performance across machine vision tasks, ultimately in object detection. This detector is based on a self-attention mechanism along with the transformer encoder-decoder architecture to capture the global context in the image. The critical issue to be addressed is how this model architecture can handle different image nuisances, such as occlusion and adversarial perturbations. We studied this issue by measuring the performance of DETR with different experiments and benchmarking the network with convolutional neural network (CNN) based detectors like YOLO and Faster-RCNN. We found that DETR performs well when it comes to resistance to interference from information loss in occlusion images. Despite that, we found that the adversarial stickers put on the image require the network to produce a new unnecessary set of keys, queries, and values, which in most cases, results in a misdirection of the network. DETR also performed poorer than YOLOv5 in the image corruption benchmark. Furthermore, we found that DETR depends heavily on the main query when making a prediction, which leads to imbalanced contributions between queries since the main query receives most of the gradient flow.