Abstract:Local image feature descriptors have had a tremendous impact on the development and application of computer vision methods. It is therefore unsurprising that significant efforts are being made for learning-based image point descriptors. However, the advantage of learned methods over handcrafted methods in real applications is subtle and more nuanced than expected. Moreover, handcrafted descriptors such as SIFT and SURF still perform better point localization in Structure-from-Motion (SfM) compared to many learned counterparts. In this paper, we propose a very simple and effective approach to learning local image descriptors by using a hand-crafted detector and descriptor. Specifically, we choose to learn only the descriptors, supported by handcrafted descriptors while discarding the point localization head. We optimize the final descriptor by leveraging the knowledge already present in the handcrafted descriptor. Such an approach of optimization allows us to discard learning knowledge already present in non-differentiable functions such as the hand-crafted descriptors and only learn the residual knowledge in the main network branch. This offers 50X convergence speed compared to the standard baseline architecture of SuperPoint while at inference the combined descriptor provides superior performance over the learned and hand-crafted descriptors. This is done with minor increase in the computations over the baseline learned descriptor. Our approach has potential applications in ensemble learning and learning with non-differentiable functions. We perform experiments in matching, camera localization and Structure-from-Motion in order to showcase the advantages of our approach.
Abstract:With the widespread use of NeRF-based implicit 3D representation, the need for camera localization in the same representation becomes manifestly apparent. Doing so not only simplifies the localization process -- by avoiding an outside-the-NeRF-based localization -- but also has the potential to offer the benefit of enhanced localization. This paper studies the problem of localizing cameras in NeRF using a diffusion model for camera pose adjustment. More specifically, given a pre-trained NeRF model, we train a diffusion model that iteratively updates randomly initialized camera poses, conditioned upon the image to be localized. At test time, a new camera is localized in two steps: first, coarse localization using the proposed pose diffusion process, followed by local refinement steps of a pose inversion process in NeRF. In fact, the proposed camera localization by pose diffusion (CaLDiff) method also integrates the pose inversion steps within the diffusion process. Such integration offers significantly better localization, thanks to our downstream refinement-aware diffusion process. Our exhaustive experiments on challenging real-world data validate our method by providing significantly better results than the compared methods and the established baselines. Our source code will be made publicly available.