Abstract:This study presents a methodology to safely manipulate branches to aid various agricultural tasks. Humans in a real agricultural environment often manipulate branches to perform agricultural tasks effectively, but current agricultural robots lack this capability. This proposed strategy to manipulate branches can aid in different precision agriculture tasks, such as fruit picking in dense foliage, pollinating flowers under occlusion, and moving overhanging vines and branches for navigation. The proposed method modifies RRT* to plan a path that satisfies the branch geometric constraints and obeys branch deformable characteristics. Re-planning is done to obtain a path that helps the robot exert force within a desired range so that branches are not damaged during manipulation. Experimentally, this method achieved a success rate of 78% across 50 trials, successfully moving a branch from different starting points to a target region.
Abstract:This work presents the design of Stickbug, a six-armed, multi-agent, precision pollination robot that combines the accuracy of single-agent systems with swarm parallelization in greenhouses. Precision pollination robots have often been proposed to offset the effects of a decreasing population of natural pollinators, but they frequently lack the required parallelization and scalability. Stickbug achieves this by allowing each arm and drive base to act as an individual agent, significantly reducing planning complexity. Stickbug uses a compact holonomic Kiwi drive to navigate narrow greenhouse rows, a tall mast to support multiple manipulators and reach plant heights, a detection model and classifier to identify Bramble flowers, and a felt-tipped end-effector for contact-based pollination. Initial experimental validation demonstrates that Stickbug can attempt over 1.5 pollinations per minute with a 50% success rate. Additionally, a Bramble flower perception dataset was created and is publicly available alongside Stickbug's software and design files.