Abstract:Data-driven thalamic nuclei parcellation depends on high-quality manual annotations. However, the small size and low contrast changes among thalamic nuclei, yield annotations that are often incomplete, noisy, or ambiguously labelled. To train a robust thalamic nuclei parcellation model with noisy annotations, we propose a label propagation algorithm based on random walker to refine the annotations before model training. A two-step model was trained to generate first the whole thalamus and then the nuclei masks. We conducted experiments on a mild traumatic brain injury~(mTBI) dataset with noisy thalamic nuclei annotations. Our model outperforms current state-of-the-art thalamic nuclei parcellations by a clear margin. We believe our method can also facilitate the training of other parcellation models with noisy labels.
Abstract:Connectivity information derived from diffusion-weighted magnetic resonance images~(DW-MRIs) plays an important role in studying human subcortical gray matter structures. However, due to the $O(N^2)$ complexity of computing the connectivity of each voxel to every other voxel (or multiple ROIs), the current practice of extracting connectivity information is highly inefficient. This makes the processing of high-resolution images and population-level analyses very computationally demanding. To address this issue, we propose a more efficient way to extract connectivity information; briefly, we consider two regions/voxels to be connected if a white matter fiber streamline passes through them -- no matter where the streamline originates. We consider the thalamus parcellation task for demonstration purposes; our experiments show that our approach brings a 30 to 120 times speedup over traditional approaches with comparable qualitative parcellation results. We also demonstrate high-resolution connectivity features can be super-resolved from low-resolution DW-MRI in our framework. Together, these two innovations enable higher resolution connectivity analysis from DW-MRI. Our source code is availible at jasonbian97.github.io/fastcod.
Abstract:The thalamus is a subcortical gray matter structure that plays a key role in relaying sensory and motor signals within the brain. Its nuclei can atrophy or otherwise be affected by neurological disease and injuries including mild traumatic brain injury. Segmenting both the thalamus and its nuclei is challenging because of the relatively low contrast within and around the thalamus in conventional magnetic resonance (MR) images. This paper explores imaging features to determine key tissue signatures that naturally cluster, from which we can parcellate thalamic nuclei. Tissue contrasts include T1-weighted and T2-weighted images, MR diffusion measurements including FA, mean diffusivity, Knutsson coefficients that represent fiber orientation, and synthetic multi-TI images derived from FGATIR and T1-weighted images. After registration of these contrasts and isolation of the thalamus, we use the uniform manifold approximation and projection (UMAP) method for dimensionality reduction to produce a low-dimensional representation of the data within the thalamus. Manual labeling of the thalamus provides labels for our UMAP embedding from which k nearest neighbors can be used to label new unseen voxels in that same UMAP embedding. N -fold cross-validation of the method reveals comparable performance to state-of-the-art methods for thalamic parcellation.
Abstract:Data from diffusion magnetic resonance imaging (dMRI) can be used to reconstruct fiber tracts, for example, in muscle and white matter. Estimation of fiber orientations (FOs) is a crucial step in the reconstruction process and these estimates can be corrupted by noise. In this paper, a new method called Fiber Orientation Reconstruction using Neighborhood Information (FORNI) is described and shown to reduce the effects of noise and improve FO estimation performance by incorporating spatial consistency. FORNI uses a fixed tensor basis to model the diffusion weighted signals, which has the advantage of providing an explicit relationship between the basis vectors and the FOs. FO spatial coherence is encouraged using weighted l1-norm regularization terms, which contain the interaction of directional information between neighbor voxels. Data fidelity is encouraged using a squared error between the observed and reconstructed diffusion weighted signals. After appropriate weighting of these competing objectives, the resulting objective function is minimized using a block coordinate descent algorithm, and a straightforward parallelization strategy is used to speed up processing. Experiments were performed on a digital crossing phantom, ex vivo tongue dMRI data, and in vivo brain dMRI data for both qualitative and quantitative evaluation. The results demonstrate that FORNI improves the quality of FO estimation over other state of the art algorithms.