Abstract:Single image scene relighting aims to generate a realistic new version of an input image so that it appears to be illuminated by a new target light condition. Although existing works have explored this problem from various perspectives, generating relit images under arbitrary light conditions remains highly challenging, and related datasets are scarce. Our work addresses this problem from both the dataset and methodological perspectives. We propose two new datasets: a synthetic dataset with the ground truth of intrinsic components and a real dataset collected under laboratory conditions. These datasets alleviate the scarcity of existing datasets. To incorporate physical consistency in the relighting pipeline, we establish a two-stage network based on intrinsic decomposition, giving outputs at intermediate steps, thereby introducing physical constraints. When the training set lacks ground truth for intrinsic decomposition, we introduce an unsupervised module to ensure that the intrinsic outputs are satisfactory. Our method outperforms the state-of-the-art methods in performance, as tested on both existing datasets and our newly developed datasets. Furthermore, pretraining our method or other prior methods using our synthetic dataset can enhance their performance on other datasets. Since our method can accommodate any light conditions, it is capable of producing animated results. The dataset, method, and videos are publicly available.
Abstract:The task of extracting intrinsic components, such as reflectance and shading, from neural radiance fields is of growing interest. However, current methods largely focus on synthetic scenes and isolated objects, overlooking the complexities of real scenes with backgrounds. To address this gap, our research introduces a method that combines relighting with intrinsic decomposition. By leveraging light variations in scenes to generate pseudo labels, our method provides guidance for intrinsic decomposition without requiring ground truth data. Our method, grounded in physical constraints, ensures robustness across diverse scene types and reduces the reliance on pre-trained models or hand-crafted priors. We validate our method on both synthetic and real-world datasets, achieving convincing results. Furthermore, the applicability of our method to image editing tasks demonstrates promising outcomes.
Abstract:Automatic document content processing is affected by artifacts caused by the shape of the paper, non-uniform and diverse color of lighting conditions. Fully-supervised methods on real data are impossible due to the large amount of data needed. Hence, the current state of the art deep learning models are trained on fully or partially synthetic images. However, document shadow or shading removal results still suffer because: (a) prior methods rely on uniformity of local color statistics, which limit their application on real-scenarios with complex document shapes and textures and; (b) synthetic or hybrid datasets with non-realistic, simulated lighting conditions are used to train the models. In this paper we tackle these problems with our two main contributions. First, a physically constrained learning-based method that directly estimates document reflectance based on intrinsic image formation which generalizes to challenging illumination conditions. Second, a new dataset that clearly improves previous synthetic ones, by adding a large range of realistic shading and diverse multi-illuminant conditions, uniquely customized to deal with documents in-the-wild. The proposed architecture works in a self-supervised manner where only the synthetic texture is used as a weak training signal (obviating the need for very costly ground truth with disentangled versions of shading and reflectance). The proposed approach leads to a significant generalization of document reflectance estimation in real scenes with challenging illumination. We extensively evaluate on the real benchmark datasets available for intrinsic image decomposition and document shadow removal tasks. Our reflectance estimation scheme, when used as a pre-processing step of an OCR pipeline, shows a 26% improvement of character error rate (CER), thus, proving the practical applicability.
Abstract:We present a method to estimate the direction and color of the scene light source from a single image. Our method is based on two main ideas: (a) we use a new synthetic dataset with strong shadow effects with similar constraints to the SID dataset; (b) we define a deep architecture trained on the mentioned dataset to estimate the direction and color of the scene light source. Apart from showing good performance on synthetic images, we additionally propose a preliminary procedure to obtain light positions of the Multi-Illumination dataset, and, in this way, we also prove that our trained model achieves good performance when it is applied to real scenes.
Abstract:Estimation of intrinsic images still remains a challenging task due to weaknesses of ground-truth datasets, which either are too small or present non-realistic issues. On the other hand, end-to-end deep learning architectures start to achieve interesting results that we believe could be improved if important physical hints were not ignored. In this work, we present a twofold framework: (a) a flexible generation of images overcoming some classical dataset problems such as larger size jointly with coherent lighting appearance; and (b) a flexible architecture tying physical properties through intrinsic losses. Our proposal is versatile, presents low computation time, and achieves state-of-the-art results.
Abstract:Training a Siamese architecture for re-identification with a large number of identities is a challenging task due to the difficulty of finding relevant negative samples efficiently. In this work we present Bag of Negatives (BoN), a method for accelerated and improved training of Siamese networks that scales well on datasets with a very large number of identities. BoN is an efficient and loss-independent method, able to select a bag of high quality negatives, based on a novel online hashing strategy.