Abstract:In epidemiology, traditional statistical methods such as logistic regression, linear regression, and other parametric models are commonly employed to investigate associations between predictors and health outcomes. However, non-parametric machine learning techniques, such as deep neural networks (DNNs), coupled with explainable AI (XAI) tools, offer new opportunities for this task. Despite their potential, these methods face challenges due to the limited availability of high-quality, high-quantity data in this field. To address these challenges, we introduce SEANN, a novel approach for informed DNNs that leverages a prevalent form of domain-specific knowledge: Pooled Effect Sizes (PES). PESs are commonly found in published Meta-Analysis studies, in different forms, and represent a quantitative form of a scientific consensus. By direct integration within the learning procedure using a custom loss, we experimentally demonstrate significant improvements in the generalizability of predictive performances and the scientific plausibility of extracted relationships compared to a domain-knowledge agnostic neural network in a scarce and noisy data setting.
Abstract:We analyze the token transfer network on Ethereum, focusing on accounts associated with Alameda Research, a cryptocurrency trading firm implicated in the misuse of FTX customer funds. Using a multi-token network representation, we examine node centralities and the network backbone to identify critical accounts, tokens, and activity groups. The temporal evolution of Alameda accounts reveals shifts in token accumulation and distribution patterns leading up to its bankruptcy in November 2022. Through network analysis, our work offers insights into the activities and dynamics that shape the DeFi ecosystem.
Abstract:Most available data is unstructured, making it challenging to access valuable information. Automatically building Knowledge Graphs (KGs) is crucial for structuring data and making it accessible, allowing users to search for information effectively. KGs also facilitate insights, inference, and reasoning. Traditional NLP methods, such as named entity recognition and relation extraction, are key in information retrieval but face limitations, including the use of predefined entity types and the need for supervised learning. Current research leverages large language models' capabilities, such as zero- or few-shot learning. However, unresolved and semantically duplicated entities and relations still pose challenges, leading to inconsistent graphs and requiring extensive post-processing. Additionally, most approaches are topic-dependent. In this paper, we propose iText2KG, a method for incremental, topic-independent KG construction without post-processing. This plug-and-play, zero-shot method is applicable across a wide range of KG construction scenarios and comprises four modules: Document Distiller, Incremental Entity Extractor, Incremental Relation Extractor, and Graph Integrator and Visualization. Our method demonstrates superior performance compared to baseline methods across three scenarios: converting scientific papers to graphs, websites to graphs, and CVs to graphs.
Abstract:In this paper we introduce Y, a new-generation digital twin designed to replicate an online social media platform. Digital twins are virtual replicas of physical systems that allow for advanced analyses and experimentation. In the case of social media, a digital twin such as Y provides a powerful tool for researchers to simulate and understand complex online interactions. {\tt Y} leverages state-of-the-art Large Language Models (LLMs) to replicate sophisticated agent behaviors, enabling accurate simulations of user interactions, content dissemination, and network dynamics. By integrating these aspects, Y offers valuable insights into user engagement, information spread, and the impact of platform policies. Moreover, the integration of LLMs allows Y to generate nuanced textual content and predict user responses, facilitating the study of emergent phenomena in online environments. To better characterize the proposed digital twin, in this paper we describe the rationale behind its implementation, provide examples of the analyses that can be performed on the data it enables to be generated, and discuss its relevance for multidisciplinary research.
Abstract:Groups -- such as clusters of points or communities of nodes -- are fundamental when addressing various data mining tasks. In temporal data, the predominant approach for characterizing group evolution has been through the identification of ``events". However, the events usually described in the literature, e.g., shrinks/growths, splits/merges, are often arbitrarily defined, creating a gap between such theoretical/predefined types and real-data group observations. Moving beyond existing taxonomies, we think of events as ``archetypes" characterized by a unique combination of quantitative dimensions that we call ``facets". Group dynamics are defined by their position within the facet space, where archetypal events occupy extremities. Thus, rather than enforcing strict event types, our approach can allow for hybrid descriptions of dynamics involving group proximity to multiple archetypes. We apply our framework to evolving groups from several face-to-face interaction datasets, showing it enables richer, more reliable characterization of group dynamics with respect to state-of-the-art methods, especially when the groups are subject to complex relationships. Our approach also offers intuitive solutions to common tasks related to dynamic group analysis, such as choosing an appropriate aggregation scale, quantifying partition stability, and evaluating event quality.
Abstract:Bitcoin is the first and highest valued cryptocurrency that stores transactions in a publicly distributed ledger called the blockchain. Understanding the activity and behavior of Bitcoin actors is a crucial research topic as they are pseudonymous in the transaction network. In this article, we propose a method based on taint analysis to extract taint flows --dynamic networks representing the sequence of Bitcoins transferred from an initial source to other actors until dissolution. Then, we apply graph embedding methods to characterize taint flows. We evaluate our embedding method with taint flows from top mining pools and show that it can classify mining pools with high accuracy. We also found that taint flows from the same period show high similarity. Our work proves that tracing the money flows can be a promising approach to classifying source actors and characterizing different money flow patterns