Abstract:Free associations have been extensively used in cognitive psychology and linguistics for studying how conceptual knowledge is organized. Recently, the potential of applying a similar approach for investigating the knowledge encoded in LLMs has emerged, specifically as a method for investigating LLM biases. However, the absence of large-scale LLM-generated free association norms that are comparable with human-generated norms is an obstacle to this new research direction. To address this limitation, we create a new dataset of LLM-generated free association norms modeled after the "Small World of Words" (SWOW) human-generated norms consisting of approximately 12,000 cue words. We prompt three LLMs, namely Mistral, Llama3, and Haiku, with the same cues as those in the SWOW norms to generate three novel comparable datasets, the "LLM World of Words" (LWOW). Using both SWOW and LWOW norms, we construct cognitive network models of semantic memory that represent the conceptual knowledge possessed by humans and LLMs. We demonstrate how these datasets can be used for investigating implicit biases in humans and LLMs, such as the harmful gender stereotypes that are prevalent both in society and LLM outputs.
Abstract:In this paper we introduce Y, a new-generation digital twin designed to replicate an online social media platform. Digital twins are virtual replicas of physical systems that allow for advanced analyses and experimentation. In the case of social media, a digital twin such as Y provides a powerful tool for researchers to simulate and understand complex online interactions. {\tt Y} leverages state-of-the-art Large Language Models (LLMs) to replicate sophisticated agent behaviors, enabling accurate simulations of user interactions, content dissemination, and network dynamics. By integrating these aspects, Y offers valuable insights into user engagement, information spread, and the impact of platform policies. Moreover, the integration of LLMs allows Y to generate nuanced textual content and predict user responses, facilitating the study of emergent phenomena in online environments. To better characterize the proposed digital twin, in this paper we describe the rationale behind its implementation, provide examples of the analyses that can be performed on the data it enables to be generated, and discuss its relevance for multidisciplinary research.