Abstract:Autonomous agents excel in self-improvement through reflection and iterative refinement, which reuse successful task trajectories as in-context examples to assist subsequent reasoning. However, shifting across tasks often introduces a context mismatch. Hence, existing approaches either discard the trajectories or manipulate them using heuristics, leading to a non-negligible fine-tuning cost or unguaranteed performance. To bridge this gap, we reveal a context-trajectory correlation, where shifts of context are highly parallel with shifts of trajectory. Based on this finding, we propose BrIdge contextual gap FoR imprOvised trajectory STeering (Bifrost), a training-free method that leverages context differences to precisely guide the adaptation of previously solved trajectories towards the target task, mitigating the misalignment caused by context shifts. Our trajectory adaptation is conducted at the representation level using agent hidden states, ensuring trajectory transformation accurately aligns with the target context in a shared space. Across diverse benchmarks, Bifrost consistently outperforms existing trajectory reuse and finetuned self-improvement methods, demonstrating that agents can effectively leverage past experiences despite substantial context shifts.
Abstract:Foundational models (FMs), pretrained on extensive datasets using self-supervised techniques, are capable of learning generalized patterns from large amounts of data. This reduces the need for extensive labeled datasets for each new task, saving both time and resources by leveraging the broad knowledge base established during pretraining. Most research on FMs has primarily focused on unstructured data, such as text and images, or semi-structured data, like time-series. However, there has been limited attention to structured data, such as tabular data, which, despite its prevalence, remains under-studied due to a lack of clean datasets and insufficient research on the transferability of FMs for various tabular data tasks. In response to this gap, we introduce a framework called TabularFM, which incorporates state-of-the-art methods for developing FMs specifically for tabular data. This includes variations of neural architectures such as GANs, VAEs, and Transformers. We have curated a million of tabular datasets and released cleaned versions to facilitate the development of tabular FMs. We pretrained FMs on this curated data, benchmarked various learning methods on these datasets, and released the pretrained models along with leaderboards for future comparative studies. Our fully open-sourced system provides a comprehensive analysis of the transferability of tabular FMs. By releasing these datasets, pretrained models, and leaderboards, we aim to enhance the validity and usability of tabular FMs in the near future.