Abstract:Motion diffusion models have recently proven successful for text-driven human motion generation. Despite their excellent generation performance, they are challenging to infer in real time due to the multi-step sampling mechanism that involves tens or hundreds of repeat function evaluation iterations. To this end, we investigate a motion latent consistency Training (MLCT) for motion generation to alleviate the computation and time consumption during iteration inference. It applies diffusion pipelines to low-dimensional motion latent spaces to mitigate the computational burden of each function evaluation. Explaining the diffusion process with probabilistic flow ordinary differential equation (PF-ODE) theory, the MLCT allows extremely few steps infer between the prior distribution to the motion latent representation distribution via maintaining consistency of the outputs over the trajectory of PF-ODE. Especially, we introduce a quantization constraint to optimize motion latent representations that are bounded, regular, and well-reconstructed compared to traditional variational constraints. Furthermore, we propose a conditional PF-ODE trajectory simulation method, which improves the conditional generation performance with minimal additional training costs. Extensive experiments on two human motion generation benchmarks show that the proposed model achieves state-of-the-art performance with less than 10\% time cost.
Abstract:Vision-and-language navigation (VLN) is a crucial but challenging cross-modal navigation task. One powerful technique to enhance the generalization performance in VLN is the use of an independent speaker model to provide pseudo instructions for data augmentation. However, current speaker models based on Long-Short Term Memory (LSTM) lack the ability to attend to features relevant at different locations and time steps. To address this, we propose a novel progress-aware spatio-temporal transformer speaker (PASTS) model that uses the transformer as the core of the network. PASTS uses a spatio-temporal encoder to fuse panoramic representations and encode intermediate connections through steps. Besides, to avoid the misalignment problem that could result in incorrect supervision, a speaker progress monitor (SPM) is proposed to enable the model to estimate the progress of instruction generation and facilitate more fine-grained caption results. Additionally, a multifeature dropout (MFD) strategy is introduced to alleviate overfitting. The proposed PASTS is flexible to be combined with existing VLN models. The experimental results demonstrate that PASTS outperforms all existing speaker models and successfully improves the performance of previous VLN models, achieving state-of-the-art performance on the standard Room-to-Room (R2R) dataset.
Abstract:Vision-and-Language Navigation (VLN) aims to develop intelligent agents to navigate in unseen environments only through language and vision supervision. In the recently proposed continuous settings (continuous VLN), the agent must act in a free 3D space and faces tougher challenges like real-time execution, complex instruction understanding, and long action sequence prediction. For a better performance in continuous VLN, we design a multi-level instruction understanding procedure and propose a novel model, Multi-Level Attention Network (MLANet). The first step of MLANet is to generate sub-instructions efficiently. We design a Fast Sub-instruction Algorithm (FSA) to segment the raw instruction into sub-instructions and generate a new sub-instruction dataset named ``FSASub". FSA is annotation-free and faster than the current method by 70 times, thus fitting the real-time requirement in continuous VLN. To solve the complex instruction understanding problem, MLANet needs a global perception of the instruction and observations. We propose a Multi-Level Attention (MLA) module to fuse vision, low-level semantics, and high-level semantics, which produce features containing a dynamic and global comprehension of the task. MLA also mitigates the adverse effects of noise words, thus ensuring a robust understanding of the instruction. To correctly predict actions in long trajectories, MLANet needs to focus on what sub-instruction is being executed every step. We propose a Peak Attention Loss (PAL) to improve the flexible and adaptive selection of the current sub-instruction. PAL benefits the navigation agent by concentrating its attention on the local information, thus helping the agent predict the most appropriate actions. We train and test MLANet in the standard benchmark. Experiment results show MLANet outperforms baselines by a significant margin.