Abstract:In the evolving landscape of sixth-generation (6G) wireless networks, unmanned aerial vehicles (UAVs) have emerged as transformative tools for dynamic and adaptive connectivity. However, dynamically adjusting their position to offer favorable communication channels introduces operational challenges in terms of energy consumption, especially when integrating advanced communication technologies like reconfigurable intelligent surfaces (RISs) and full-duplex relays (FDRs). To this end, by recognizing the pivotal role of UAV mobility, the paper introduces an energy-aware trajectory design for UAV-mounted RISs and UAV-mounted FDRs using the decode and forward (DF) protocol, aiming to maximize the network minimum rate and enhance user fairness, while taking into consideration the available on-board energy. Specifically, this work highlights their distinct energy consumption characteristics and their associated integration challenges by developing appropriate energy consumption models for both UAV-mounted RISs and FDRs that capture the intricate relationship between key factors such as weight, and their operational characteristics. Furthermore, a joint time-division multiple access (TDMA) user scheduling-UAV trajectory optimization problem is formulated, considering the power dynamics of both systems, while assuring that the UAV energy is not depleted mid-air. Finally, simulation results underscore the importance of energy considerations in determining the optimal trajectory and scheduling and provide insights into the performance comparison of UAV-mounted RISs and FDRs in UAV-assisted wireless networks.
Abstract:In the ever-growing Internet of Things (IoT) landscape, smart power management algorithms combined with energy harvesting solutions are crucial to obtain self-sustainability. This paper presents an energy-aware adaptive sampling rate algorithm designed for embedded deployment in resource-constrained, battery-powered IoT devices. The algorithm, based on a finite state machine (FSM) and inspired by Transmission Control Protocol (TCP) Reno's additive increase and multiplicative decrease, maximizes sensor sampling rates, ensuring power self-sustainability without risking battery depletion. Moreover, we characterized our solar cell with data acquired over 48 days and used the model created to obtain energy data from an open-source world-wide dataset. To validate our approach, we introduce the EcoTrack device, a versatile device with global navigation satellite system (GNSS) capabilities and Long-Term Evolution Machine Type Communication (LTE-M) connectivity, supporting MQTT protocol for cloud data relay. This multi-purpose device can be used, for instance, as a health and safety wearable, remote hazard monitoring system, or as a global asset tracker. The results, validated on data from three different European cities, show that the proposed algorithm enables self-sustainability while maximizing sampled locations per day. In experiments conducted with a 3000 mAh battery capacity, the algorithm consistently maintained a minimum of 24 localizations per day and achieved peaks of up to 3000.
Abstract:A primary objective of the forthcoming sixth generation (6G) of wireless networking is to support demanding applications, while ensuring energy efficiency. Programmable wireless environments (PWEs) have emerged as a promising solution, leveraging reconfigurable intelligent surfaces (RISs), to control wireless propagation and deliver exceptional quality-ofservice. In this paper, we analyze the performance of a network supported by zero-energy RISs (zeRISs), which harvest energy for their operation and contribute to the realization of PWEs. Specifically, we investigate joint energy-data rate outage probability and the energy efficiency of a zeRIS-assisted communication system by employing three harvest-and-reflect (HaR) methods, i) power splitting, ii) time switching, and iii) element splitting. Furthermore, we consider two zeRIS deployment strategies, namely BS-side zeRIS and UE-side zeRIS. Simulation results validate the provided analysis and examine which HaR method performs better depending on the zeRIS placement. Finally, valuable insights and conclusions for the performance of zeRISassisted wireless networks are drawn from the presented results.