Abstract:In this paper, a new texture descriptor based on the local neighborhood intensity difference is proposed for content based image retrieval (CBIR). For computation of texture features like Local Binary Pattern (LBP), the center pixel in a 3*3 window of an image is compared with all the remaining neighbors, one pixel at a time to generate a binary bit pattern. It ignores the effect of the adjacent neighbors of a particular pixel for its binary encoding and also for texture description. The proposed method is based on the concept that neighbors of a particular pixel hold a significant amount of texture information that can be considered for efficient texture representation for CBIR. Taking this into account, we develop a new texture descriptor, named as Local Neighborhood Intensity Pattern (LNIP) which considers the relative intensity difference between a particular pixel and the center pixel by considering its adjacent neighbors and generate a sign and a magnitude pattern. Since sign and magnitude patterns hold complementary information to each other, these two patterns are concatenated into a single feature descriptor to generate a more concrete and useful feature descriptor. The proposed descriptor has been tested for image retrieval on four databases, including three texture image databases - Brodatz texture image database, MIT VisTex database and Salzburg texture database and one face database AT&T face database. The precision and recall values observed on these databases are compared with some state-of-art local patterns. The proposed method showed a significant improvement over many other existing methods.
Abstract:Staff line removal is a crucial pre-processing step in Optical Music Recognition. It is a challenging task to simultaneously reduce the noise and also retain the quality of music symbol context in ancient degraded music score images. In this paper we propose a novel approach for staff line removal, based on Generative Adversarial Networks. We convert staff line images into patches and feed them into a U-Net, used as Generator. The Generator intends to produce staff-less images at the output. Then the Discriminator does binary classification and differentiates between the generated fake staff-less image and real ground truth staff less image. For training, we use a Loss function which is a weighted combination of L2 loss and Adversarial loss. L2 loss minimizes the difference between real and fake staff-less image. Adversarial loss helps to retrieve more high quality textures in generated images. Thus our architecture supports solutions which are closer to ground truth and it reflects in our results. For evaluation we consider the ICDAR/GREC 2013 staff removal database. Our method achieves superior performance in comparison to other conventional approaches.
Abstract:In this paper, we introduce a novel technique to recover the pen trajectory of offline characters which is a crucial step for handwritten character recognition. Generally, online acquisition approach has more advantage than its offline counterpart as the online technique keeps track of the pen movement. Hence, pen tip trajectory retrieval from offline text can bridge the gap between online and offline methods. Our proposed framework employs sequence to sequence model which consists of an encoder-decoder LSTM module. Our encoder module consists of Convolutional LSTM network, which takes an offline character image as the input and encodes the feature sequence to a hidden representation. The output of the encoder is fed to a decoder LSTM and we get the successive coordinate points from every time step of the decoder LSTM. Although the sequence to sequence model is a popular paradigm in various computer vision and language translation tasks, the main contribution of our work lies in designing an end-to-end network for a decade old popular problem in Document Image Analysis community. Tamil, Telugu and Devanagari characters of LIPI Toolkit dataset are used for our experiments. Our proposed method has achieved superior performance compared to the other conventional approaches.
Abstract:Conversion of one font to another font is very useful in real life applications. In this paper, we propose a Convolutional Recurrent Generative model to solve the word level font transfer problem. Our network is able to convert the font style of any printed text images from its current font to the required font. The network is trained end-to-end for the complete word images. Thus it eliminates the necessary pre-processing steps, like character segmentations. We extend our model to conditional setting that helps to learn one-to-many mapping function. We employ a novel convolutional recurrent model architecture in the Generator that efficiently deals with the word images of arbitrary width. It also helps to maintain the consistency of the final images after concatenating the generated image patches of target font. Besides, the Generator and the Discriminator network, we employ a Classification network to classify the generated word images of converted font style to their subsequent font categories. Most of the earlier works related to image translation are performed on square images. Our proposed architecture is the first work which can handle images of varying widths. Word images generally have varying width depending on the number of characters present. Hence, we test our model on a synthetically generated font dataset. We compare our method with some of the state-of-the-art methods for image translation. The superior performance of our network on the same dataset proves the ability of our model to learn the font distributions.
Abstract:In this paper, we have proposed a novel feature descriptors combining color and texture information collectively. In our proposed color descriptor component, the inter-channel relationship between Hue (H) and Saturation (S) channels in the HSV color space has been explored which was not done earlier. We have quantized the H channel into a number of bins and performed the voting with saturation values and vice versa by following a principle similar to that of the HOG descriptor, where orientation of the gradient is quantized into a certain number of bins and voting is done with gradient magnitude. This helps us to study the nature of variation of saturation with variation in Hue and nature of variation of Hue with the variation in saturation. The texture component of our descriptor considers the co-occurrence relationship between the pixels symmetric about both the diagonals of a 3x3 window. Our work is inspired from the work done by Dubey et al.[1]. These two components, viz. color and texture information individually perform better than existing texture and color descriptors. Moreover, when concatenated the proposed descriptors provide significant improvement over existing descriptors for content base color image retrieval. The proposed descriptor has been tested for image retrieval on five databases, including texture image databases - MIT VisTex database and Salzburg texture database and natural scene databases Corel 1K, Corel 5K and Corel 10K. The precision and recall values experimented on these databases are compared with some state-of-art local patterns. The proposed method provided satisfactory results from the experiments.
Abstract:In this paper, a new texture descriptor named "Fractional Local Neighborhood Intensity Pattern" (FLNIP) has been proposed for content based image retrieval (CBIR). It is an extension of the Local Neighborhood Intensity Pattern (LNIP)[1]. FLNIP calculates the relative intensity difference between a particular pixel and the center pixel of a 3x3 window by considering the relationship with adjacent neighbors. In this work, the fractional change in the local neighborhood involving the adjacent neighbors has been calculated first with respect to one of the eight neighbors of the center pixel of a 3x3 window. Next, the fractional change has been calculated with respect to the center itself. The two values of fractional change are next compared to generate a binary bit pattern. Both sign and magnitude information are encoded in a single descriptor as it deals with the relative change in magnitude in the adjacent neighborhood i.e., the comparison of the fractional change. The descriptor is applied on four multi-resolution images- one being the raw image and the other three being filtered gaussian images obtained by applying gaussian filters of different standard deviations on the raw image to signify the importance of exploring texture information at different resolutions in an image. The four sets of distances obtained between the query and the target image are then combined with a genetic algorithm based approach to improve the retrieval performance by minimizing the distance between similar class images. The performance of the method has been tested for image retrieval on four popular databases. The precision and recall values observed on these databases have been compared with recent state-of-art local patterns. The proposed method has shown a significant improvement over many other existing methods.