Abstract:Large Language Models (LLMs), excel in natural language understanding, but their capability for complex mathematical reasoning with an amalgamation of structured tables and unstructured text is uncertain. This study explores LLMs' mathematical reasoning on four financial tabular question-answering datasets: TATQA, FinQA, ConvFinQA, and Multihiertt. Through extensive experiments with various models and prompting techniques, we assess how LLMs adapt to complex tables and mathematical tasks. We focus on sensitivity to table complexity and performance variations with an increasing number of arithmetic reasoning steps. The results provide insights into LLMs' capabilities and limitations in handling complex mathematical scenarios for semi-structured tables. Ultimately, we introduce a novel prompting technique tailored to semi-structured documents, matching or outperforming other baselines in performance while providing a nuanced understanding of LLMs abilities for such a task.
Abstract:Recent work shows that in-context learning and optimization of in-context examples (ICE) can significantly improve the accuracy of large language models (LLMs) on a wide range of tasks, leading to an apparent consensus that ICE optimization is crucial for better performance. However, most of these studies assume a fixed or no instruction provided in the prompt. We challenge this consensus by investigating the necessity of optimizing ICE when task-specific instructions are provided and find that there are tasks for which it yields diminishing returns. In particular, using a diverse set of tasks and a systematically created instruction set with gradually added details, we find that as the prompt instruction becomes more detailed, the returns on ICE optimization diminish. To characterize this behavior, we introduce a task-specific metric called Normalized Invariability to Choice of Examples (NICE) that quantifies the learnability of tasks from a given instruction, and provides a heuristic that helps decide whether to optimize instructions or ICE for a new task. Given a task, the proposed metric can reliably predict the utility of optimizing ICE compared to using random ICE.
Abstract:We present very early results on using GPT-3 to perform question answering on tabular data. We find that stock pre-trained GPT-3 is able to zero-shot learn the table structure from a serialized JSON array-of-arrays representation, and able to answer lookup queries and simple comparison questions in natural language without any fine-tuning. We further find that simple prompt engineering to include few-shot static Q&A examples significantly improves accuracy. Lastly, we find that intermixing passage text improves accuracy even further on heterogeneous data. We apply our approach on a novel dataset of simple tables in newspaper infographics with promising results. Overall, we find much cause for optimism in this basic approach.