Abstract:Implicit representation mapping (IRM) can translate image features to any continuous resolution, showcasing its potent capability for ultra-high-resolution image segmentation refinement. Current IRM-based methods for refining ultra-high-resolution image segmentation often rely on CNN-based encoders to extract image features and apply a Shared Implicit Representation Mapping Function (SIRMF) to convert pixel-wise features into segmented results. Hence, these methods exhibit two crucial limitations. Firstly, the CNN-based encoder may not effectively capture long-distance information, resulting in a lack of global semantic information in the pixel-wise features. Secondly, SIRMF is shared across all samples, which limits its ability to generalize and handle diverse inputs. To address these limitations, we propose a novel approach that leverages the newly proposed Adaptive Implicit Representation Mapping (AIRM) for ultra-high-resolution Image Segmentation. Specifically, the proposed method comprises two components: (1) the Affinity Empowered Encoder (AEE), a robust feature extractor that leverages the benefits of the transformer architecture and semantic affinity to model long-distance features effectively, and (2) the Adaptive Implicit Representation Mapping Function (AIRMF), which adaptively translates pixel-wise features without neglecting the global semantic information, allowing for flexible and precise feature translation. We evaluated our method on the commonly used ultra-high-resolution segmentation refinement datasets, i.e., BIG and PASCAL VOC 2012. The extensive experiments demonstrate that our method outperforms competitors by a large margin. The code is provided in supplementary material.
Abstract:Shadow removal is to restore shadow regions to their shadow-free counterparts while leaving non-shadow regions unchanged. State-of-the-art shadow removal methods train deep neural networks on collected shadow & shadow-free image pairs, which are desired to complete two distinct tasks via shared weights, i.e., data restoration for shadow regions and identical mapping for non-shadow regions. We find that these two tasks exhibit poor compatibility, and using shared weights for these two tasks could lead to the model being optimized towards only one task instead of both during the training process. Note that such a key issue is not identified by existing deep learning-based shadow removal methods. To address this problem, we propose to handle these two tasks separately and leverage the identical mapping results to guide the shadow restoration in an iterative manner. Specifically, our method consists of three components: an identical mapping branch (IMB) for non-shadow regions processing, an iterative de-shadow branch (IDB) for shadow regions restoration based on identical results, and a smart aggregation block (SAB). The IMB aims to reconstruct an image that is identical to the input one, which can benefit the restoration of the non-shadow regions without explicitly distinguishing between shadow and non-shadow regions. Utilizing the multi-scale features extracted by the IMB, the IDB can effectively transfer information from non-shadow regions to shadow regions progressively, facilitating the process of shadow removal. The SAB is designed to adaptive integrate features from both IMB and IDB. Moreover, it generates a finely tuned soft shadow mask that guides the process of removing shadows. Extensive experiments demonstrate our method outperforms all the state-of-the-art shadow removal approaches on the widely used shadow removal datasets.
Abstract:Designing a point cloud upsampler, which aims to generate a clean and dense point cloud given a sparse point representation, is a fundamental and challenging problem in computer vision. A line of attempts achieves this goal by establishing a point-to-point mapping function via deep neural networks. However, these approaches are prone to produce outlier points due to the lack of explicit surface-level constraints. To solve this problem, we introduce a novel surface regularizer into the upsampler network by forcing the neural network to learn the underlying parametric surface represented by bicubic functions and rotation functions, where the new generated points are then constrained on the underlying surface. These designs are integrated into two different networks for two tasks that take advantages of upsampling layers - point cloud upsampling and point cloud completion for evaluation. The state-of-the-art experimental results on both tasks demonstrate the effectiveness of the proposed method. The implementation code will be available at https://github.com/corecai163/PSCU.