Shadow removal is to restore shadow regions to their shadow-free counterparts while leaving non-shadow regions unchanged. State-of-the-art shadow removal methods train deep neural networks on collected shadow & shadow-free image pairs, which are desired to complete two distinct tasks via shared weights, i.e., data restoration for shadow regions and identical mapping for non-shadow regions. We find that these two tasks exhibit poor compatibility, and using shared weights for these two tasks could lead to the model being optimized towards only one task instead of both during the training process. Note that such a key issue is not identified by existing deep learning-based shadow removal methods. To address this problem, we propose to handle these two tasks separately and leverage the identical mapping results to guide the shadow restoration in an iterative manner. Specifically, our method consists of three components: an identical mapping branch (IMB) for non-shadow regions processing, an iterative de-shadow branch (IDB) for shadow regions restoration based on identical results, and a smart aggregation block (SAB). The IMB aims to reconstruct an image that is identical to the input one, which can benefit the restoration of the non-shadow regions without explicitly distinguishing between shadow and non-shadow regions. Utilizing the multi-scale features extracted by the IMB, the IDB can effectively transfer information from non-shadow regions to shadow regions progressively, facilitating the process of shadow removal. The SAB is designed to adaptive integrate features from both IMB and IDB. Moreover, it generates a finely tuned soft shadow mask that guides the process of removing shadows. Extensive experiments demonstrate our method outperforms all the state-of-the-art shadow removal approaches on the widely used shadow removal datasets.