Abstract:Large language models (LLMs) have been proposed as powerful tools for detecting software vulnerabilities, where task-specific fine-tuning is typically employed to provide vulnerability-specific knowledge to the LLMs for this purpose. However, traditional full-parameter fine-tuning is inefficient for modern, complex LLMs, which contain billions of parameters. Soft prompt tuning has been suggested as a more efficient alternative for fine-tuning LLMs in general cases. However, pure soft prompt tuning treats source code as plain text, losing structural information inherent in source code. Meanwhile, graph-enhanced soft prompt tuning methods, which aim to address this issue, are unable to preserve the rich semantic information within code graphs, as they are primarily designed for general graph-related tasks and focus more on adjacency information. They also fail to ensure computational efficiency while accounting for graph-text interactions. This paper, therefore, introduces a new code graph-enhanced, structure-aware soft prompt tuning method for vulnerability detection, referred to as CGP-Tuning. It employs innovative type-aware embeddings to capture the rich semantic information within code graphs, along with a novel and efficient cross-modal alignment module that achieves linear computational cost while incorporating graph-text interactions. The proposed CGP-Tuning is evaluated on the latest DiverseVul dataset and the most recent open-source code LLMs, CodeLlama and CodeGemma. Experimental results demonstrate that CGP-Tuning outperforms the best state-of-the-art method by an average of 3.5 percentage points in accuracy, without compromising its vulnerability detection capabilities for long source code.
Abstract:This practical experience report explores Neural Machine Translation (NMT) models' capability to generate offensive security code from natural language (NL) descriptions, highlighting the significance of contextual understanding and its impact on model performance. Our study employs a dataset comprising real shellcodes to evaluate the models across various scenarios, including missing information, necessary context, and unnecessary context. The experiments are designed to assess the models' resilience against incomplete descriptions, their proficiency in leveraging context for enhanced accuracy, and their ability to discern irrelevant information. The findings reveal that the introduction of contextual data significantly improves performance. However, the benefits of additional context diminish beyond a certain point, indicating an optimal level of contextual information for model training. Moreover, the models demonstrate an ability to filter out unnecessary context, maintaining high levels of accuracy in the generation of offensive security code. This study paves the way for future research on optimizing context use in AI-driven code generation, particularly for applications requiring a high degree of technical precision such as the generation of offensive code.
Abstract:Recent advances of artificial intelligence (AI) code generators are opening new opportunities in software security research, including misuse by malicious actors. We review use cases for AI code generators for security and introduce an evaluation benchmark.
Abstract:In this paper, we propose a fully automated method, named ACCA, to evaluate the correctness of AI-generated code for security purposes. The method uses symbolic execution to assess whether the AI-generated code behaves as a reference implementation. We use ACCA to assess four state-of-the-art models trained to generate security-oriented assembly code and compare the results of the evaluation with different baseline solutions, including output similarity metrics, widely used in the field, and the well-known ChatGPT, the AI-powered language model developed by OpenAI. Our experiments show that our method outperforms the baseline solutions and assesses the correctness of the AI-generated code similar to the human-based evaluation, which is considered the ground truth for the assessment in the field. Moreover, ACCA has a very strong correlation with human evaluation (Pearson's correlation coefficient r=0.84 on average). Finally, since it is a fully automated solution that does not require any human intervention, the proposed method performs the assessment of every code snippet in ~0.17s on average, which is definitely lower than the average time required by human analysts to manually inspect the code, based on our experience.
Abstract:In this work, we assess the security of AI code generators via data poisoning, i.e., an attack that injects malicious samples into the training data to generate vulnerable code. We poison the training data by injecting increasing amounts of code containing security vulnerabilities and assess the attack's success on different state-of-the-art models for code generation. Our analysis shows that AI code generators are vulnerable to even a small amount of data poisoning. Moreover, the attack does not impact the correctness of code generated by pre-trained models, making it hard to detect.
Abstract:In this work, we present a method to add perturbations to the code descriptions, i.e., new inputs in natural language (NL) from well-intentioned developers, in the context of security-oriented code, and analyze how and to what extent perturbations affect the performance of AI offensive code generators. Our experiments show that the performance of the code generators is highly affected by perturbations in the NL descriptions. To enhance the robustness of the code generators, we use the method to perform data augmentation, i.e., to increase the variability and diversity of the training data, proving its effectiveness against both perturbed and non-perturbed code descriptions.
Abstract:AI-based code generators are an emerging solution for automatically writing programs starting from descriptions in natural language, by using deep neural networks (Neural Machine Translation, NMT). In particular, code generators have been used for ethical hacking and offensive security testing by generating proof-of-concept attacks. Unfortunately, the evaluation of code generators still faces several issues. The current practice uses automatic metrics, which compute the textual similarity of generated code with ground-truth references. However, it is not clear what metric to use, and which metric is most suitable for specific contexts. This practical experience report analyzes a large set of output similarity metrics on offensive code generators. We apply the metrics on two state-of-the-art NMT models using two datasets containing offensive assembly and Python code with their descriptions in the English language. We compare the estimates from the automatic metrics with human evaluation and provide practical insights into their strengths and limitations.
Abstract:Neural Machine Translation (NMT) has reached a level of maturity to be recognized as the premier method for the translation between different languages and aroused interest in different research areas, including software engineering. A key step to validate the robustness of the NMT models consists in evaluating the performance of the models on adversarial inputs, i.e., inputs obtained from the original ones by adding small amounts of perturbation. However, when dealing with the specific task of the code generation (i.e., the generation of code starting from a description in natural language), it has not yet been defined an approach to validate the robustness of the NMT models. In this work, we address the problem by identifying a set of perturbations and metrics tailored for the robustness assessment of such models. We present a preliminary experimental evaluation, showing what type of perturbations affect the model the most and deriving useful insights for future directions.
Abstract:Writing software exploits is an important practice for offensive security analysts to investigate and prevent attacks. In particular, shellcodes are especially time-consuming and a technical challenge, as they are written in assembly language. In this work, we address the task of automatically generating shellcodes, starting purely from descriptions in natural language, by proposing an approach based on Neural Machine Translation (NMT). We then present an empirical study using a novel dataset (Shellcode_IA32), which consists of 3,200 assembly code snippets of real Linux/x86 shellcodes from public databases, annotated using natural language. Moreover, we propose novel metrics to evaluate the accuracy of NMT at generating shellcodes. The empirical analysis shows that NMT can generate assembly code snippets from the natural language with high accuracy and that in many cases can generate entire shellcodes with no errors.
Abstract:Identifying the failure modes of cloud computing systems is a difficult and time-consuming task, due to the growing complexity of such systems, and the large volume and noisiness of failure data. This paper presents a novel approach for analyzing failure data from cloud systems, in order to relieve human analysts from manually fine-tuning the data for feature engineering. The approach leverages Deep Embedded Clustering (DEC), a family of unsupervised clustering algorithms based on deep learning, which uses an autoencoder to optimize data dimensionality and inter-cluster variance. We applied the approach in the context of the OpenStack cloud computing platform, both on the raw failure data and in combination with an anomaly detection pre-processing algorithm. The results show that the performance of the proposed approach, in terms of purity of clusters, is comparable to, or in some cases even better than manually fine-tuned clustering, thus avoiding the need for deep domain knowledge and reducing the effort to perform the analysis. In all cases, the proposed approach provides better performance than unsupervised clustering when no feature engineering is applied to the data. Moreover, the distribution of failure modes from the proposed approach is closer to the actual frequency of the failure modes.